2,076 research outputs found

    Remarks on Conserved Quantities and Entropy of BTZ Black Hole Solutions. Part II: BCEA Theory

    Full text link
    The BTZ black hole solution for (2+1)-spacetime is considered as a solution of a triad-affine theory (BCEA) in which topological matter is introduced to replace the cosmological constant in the model. Conserved quantities and entropy are calculated via Noether theorem, reproducing in a geometrical and global framework earlier results found in the literature using local formalisms. Ambiguities in global definitions of conserved quantities are considered in detail. A dual and covariant Legendre transformation is performed to re-formulate BCEA theory as a purely metric (natural) theory (BCG) coupled to topological matter. No ambiguities in the definition of mass and angular momentum arise in BCG theory. Moreover, gravitational and matter contributions to conserved quantities and entropy are isolated. Finally, a comparison of BCEA and BCG theories is carried out by relying on the results obtained in both theories.Comment: PlainTEX, 20 page

    The effect of particle size on the core losses of soft magnetic composites

    Get PDF
    In the field of electrical machines, the actual research activities mainly focus on improving the energetic aspects; for this reason, new magnetic materials are currently investigated and proposed, supporting the design and production of magnetic cores. The innovative aspects are related to both hard and soft magnetic materials. In the case of permanent magnets, the use of NdFeB bonded magnets represents a good solution in place of ferrites. For what concerns the soft magnetic materials, the adoption of Soft Magnetic Composites (SMCs) cores permits significant advantages compared to the laminated sheets, such as complex geometries and reduced eddy currents losses. SMC materials are ferromagnetic grains covered with an insulating layer that can be of an organic or inorganic type. The proposed study focuses on the impact of the particle size and distribution on the final material properties. The original powder was cut into three different fractions, and different combinations have been prepared, varying the fractions percentages. The magnetic and energetic properties have been evaluated in different frequency ranges, thus ranking the best combinations. The best specimens were then tested to evaluate the mechanical performances. The preliminary results are promising, but deeper analysis and tests are required to refine the selection and evaluate the improvements against the original composition taken as a reference.In the field of electrical machines, the actual research activities mainly focus on improving the energetic aspects; for this reason, new magnetic materials are currently investigated and proposed, supporting the design and production of magnetic cores. The innovative aspects are related to both hard and soft magnetic materials. In the case of permanent magnets, the use of NdFeB bonded magnets represents a good solution in place of ferrites. For what concerns the soft magnetic materials, the adoption of Soft Magnetic Composites (SMCs) cores permits significant advantages compared to the laminated sheets, such as complex geometries and reduced eddy currents losses. SMC materials are ferromagnetic grains covered with an insulating layer that can be of an organic or inorganic type. The proposed study focuses on the impact of the particle size and distribution on the final material properties. The original powder was cut into three different fractions, and different combinations have been prepared, varying th..

    The flash flood of the Bisagno Creek on 9th October 2014: An “unfortunate” combination of spatial and temporal scales

    Get PDF
    SummaryOn the 9th October, 2014 a strong event hit the central part of Liguria Region producing disastrous consequences to the city of Genoa where the Bisagno Creek flooded causing one death and lots of damage. The precipitation pattern responsible for the event had peculiar spatial and temporal characteristics that led to an unexpected flash flood. The temporal sequence of rainfall intensities and the particular severity of rainfall showers at small temporal scale, together with the size of the sub-basin hit by the most intense part of the rainfall were the unfortunate concurrent ingredients that led to an “almost perfect” flash flood. The peak flow was estimated to be a 100–200years order return period.The effects of the spatial and temporal scales of the precipitation pattern were investigated by coupling a rainfall downscaling model with a hydrological model setting up an experiment that follows a probabilistic approach.Supposing that the correct volume of precipitation at different spatial and temporal scales is known, the experiment provided the probability of generating events with similar effects in terms of streamflow.Furthermore, the study gives indications regarding the goodness and reliability of the forecasted rainfall field needed, not only in terms of total rainfall volume, but even in spatial and temporal pattern, to produce the observed ground effects in terms of streamflow

    Handheld-Impedance-Measurement System with seven-decade capability and potentiostatic function

    Get PDF
    This paper describes design and test of a new impedance-measurement system for nonlinear devices that exhibits a seven-decade range and works down to a frequency of 0.01 Hz. The system is specifically designed for electrochemical measurements, but the proposed architecture can be employed in many other fields where flexible signal generation and analysis are required. The system employs an unconventional signal generator based on two pulsewidth modulation (PWM) oscillators and an autocalibration system that allows uncertainties of less than 3% to be obtained over a range of 1 kΩ to 100 GΩ. A synchronous demodulation processing allows the noise superimposed to the low-amplitude input signals to be made negligibl

    Conserved Quantities from the Equations of Motion (with applications to natural and gauge natural theories of gravitation)

    Full text link
    We present an alternative field theoretical approach to the definition of conserved quantities, based directly on the field equations content of a Lagrangian theory (in the standard framework of the Calculus of Variations in jet bundles). The contraction of the Euler-Lagrange equations with Lie derivatives of the dynamical fields allows one to derive a variational Lagrangian for any given set of Lagrangian equations. A two steps algorithmical procedure can be thence applied to the variational Lagrangian in order to produce a general expression for the variation of all quantities which are (covariantly) conserved along the given dynamics. As a concrete example we test this new formalism on Einstein's equations: well known and widely accepted formulae for the variation of the Hamiltonian and the variation of Energy for General Relativity are recovered. We also consider the Einstein-Cartan (Sciama-Kibble) theory in tetrad formalism and as a by-product we gain some new insight on the Kosmann lift in gauge natural theories, which arises when trying to restore naturality in a gauge natural variational Lagrangian.Comment: Latex file, 31 page

    Clutter and rainfall discrimination by means of doppler-polarimetric measurements and vertical reflectivity profile analysis

    Get PDF
    The estimation of rainfall rate and other parameters from radar scattering volume is heavily affected by the presence of intense sea and ground clutter and echoes which appears in anomalous propagation condition. To deal with these non meteorological echoes we present a new clutter removal algorithm which combines the results of previous works. The algorithm fully exploits both the Doppler and polarimetric capabilities of the radar used and the analysis of vertical reflectivity profile in order to achieve the better identification of the meteorological and non-meteorological targets. The algorithm has been applied to the C-band radar of Monte Settepani (Savona, Italy), which runs in a high-topography environment. Preliminary results are presented

    Long-Term Monitoring of Photovoltaic Plants

    Get PDF
    This paper deals with a data-acquisition system that has been specifically developed for a long-term monitoring of ten different photovoltaic plants. The main goals of the system consist in estimating the drift of the plant components, mainly photovoltaic modules and power inverters, and comparing the performance of the ten plants, which are based on different technologies and architectures. Owing to these goals, the traceabilityassurance of the obtained measurements is mandatory, hence the data-acquisition system has been designed to be easily calibrated and, if necessary, adjusted to compensate for measuring-chain drifts. In addition, the measurement uncertainty, which has to be suitable to distinguish the behaviour of the different PV plants, has to be stated for each of the estimated parameters. A brief description of the data-acquisition system is provided and its measurement capabilities are highlighted in terms of measured quantities and expected uncertainty. Results that refer to a period of thirty months are also reported
    • 

    corecore