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ABSTRACT
In the field of electrical machines, the actual research activities mainly focus on improving the energetic aspects; for this reason, new magnetic
materials are currently investigated and proposed, supporting the design and production of magnetic cores. The innovative aspects are related
to both hard and soft magnetic materials. In the case of permanent magnets, the use of NdFeB bonded magnets represents a good solution in
place of ferrites. For what concerns the soft magnetic materials, the adoption of Soft Magnetic Composites (SMCs) cores permits significant
advantages compared to the laminated sheets, such as complex geometries and reduced eddy currents losses. SMC materials are ferromagnetic
grains covered with an insulating layer that can be of an organic or inorganic type. The proposed study focuses on the impact of the particle
size and distribution on the final material properties. The original powder was cut into three different fractions, and different combinations
have been prepared, varying the fractions percentages. The magnetic and energetic properties have been evaluated in different frequency
ranges, thus ranking the best combinations. The best specimens were then tested to evaluate the mechanical performances. The preliminary
results are promising, but deeper analysis and tests are required to refine the selection and evaluate the improvements against the original
composition taken as a reference.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5080079

I. INTRODUCTION

Magnetic materials play an essential role in several industrial
applications, such as electromechanical devices, electronic, automo-
tive, energy production, refrigeration, magnetic separators, house-
hold equipment, etc. Most of the cited applications are based on the
use of electrical machines, which are principally made with soft and
hard magnetic materials. In the last years deeper and deeper studies,
about the development of new magnetic materials, have been car-
ried out to improve the performances of the electrical machines.1,2
The primary requirement concerned the improvement of the effi-
ciency with a higher weight-volume ratio.3 On the other hand, also
the robustness became a main parameter. Different magnetic mate-
rials, both soft and hard, have been therefore studied and proposed
to substitute the traditional ones.4,5

For the flux production in electrical machines, the adoption of
bonded permanent magnets allows getting magnetic characteristics
better than hard ferrites, exploiting the polymeric moulding tech-
nology (injection and compression).6–9 Moreover, the possibility to
make complex shaped magnets gives an advantage compared to sin-
tered NdFeB magnets, which are fragile and restricted to regular
form.10–13

In the case of soft magnetic materials, the traditional lami-
nated steel is not suitable to satisfy the innovative design criteria
of particular electrical machines, such as the axial flux machines
(AFM),14–16 the transverse flux machines (TRM),17 the claw pole
machines (CPM),18 etc.19 All mentioned machines share a com-
mon property: the complex magnetic core geometry, which requires
a 3D path for the magnetic flux. Since the laminated steel permits to
guide the magnetic flux only in 2D, new magnetic materials often
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replace them, such as the Soft Magnetic Composites (SMC).20–22
Such magnetic materials are made with a ferromagnetic base pow-
der, whose particles are covered with an electrically insulating layer
to limit the energy dissipation due to eddy current losses. In gen-
eral, the layers can be of organic or inorganic types, and different
techniques are adopted to prepare such coatings: mixing, deposi-
tion, curing, sol-gel, co-precipitation and others.23–30 Usually, the
organic layers consist of resins,31,32 while the inorganic ones are
metallic oxides, ferrite, aluminium, silicon and others.33,34 SMCs
present further advantages compared to laminated steels: low eddy
currents, low specific losses at medium-high frequencies and more
compacted machine geometries; accordingly higher power densi-
ties for the same dimension compared to the traditional radial flux
machines (RFM) are possible.16 The low mechanical strength of the
material is the weak point.

Other promising materials are the so-called Hybrid Magnetic
Composites (HMC), consisting of both soft and hard magnetic
materials powders mixed, in which the mechanical solidity is given
by a polymeric binder.35 HMCs are particular permanent magnets
with very low coercivity and can be used in substitution of AlNiCo36
and ferrite magnets mostly in sensor applications.37

II. AIM OF THE WORK
In the recent past, the Authors proposed and analysed differ-

ent magnetic materials, both permanent magnets and SMCs,6,31,38
focusing the activity in the research of their improved performance.
The development of axial flux motors needs SMC materials with
excellent properties, which can be subdivided in magnetic, ener-
getic and mechanical performances. For what concerns the magnetic
properties, good permeability (around 500) and BH curve (mag-
netic induction B at 5000 A/m over 1.3 T) are required. Regarding
the energetic aspects, the iron losses depend on the operating fre-
quency instead and must be kept as low as possible. The mechanical
properties limit the use of SMC materials in several industrial appli-
cations; in general, the mechanical strength (“Transverse Rupture
Strength” – TRS) is about 40 MPa for common commercial SMC
products. On the other hand, the commercial materials with val-
ues of 100 MPa and more are expensive and made with complicated
processes or tested only at the laboratory level.

In this work, the principal energetic aspects will be evaluated
as a function of the particle size.39–42 The iron losses in SMCs can
be divided into three components: the more common hysteresis
and eddy currents losses and the last introduced excess losses,43,44
the latter being negligible in laminated steels and bulk/massive
ferromagnetic materials.

Different particle fractions of the high-purity reference ferro-
magnetic powder were analysed (0.04 wt% oxygen content).

III. SAMPLE PREPARATION AND PROCEDURE
DESCRIPTION

The reference iron powder has been sieved in three different
normalized cuts: small (below 63 µm), medium (between 63 and
125 µm) and large (over 125 µm). The reference powder, as avail-
able from the producer, has approximately the following fraction
components: large (L) 30 wt%, medium (M) 50 wt% and small (S)
20 wt%.

FIG. 1. Specific losses at 1 T of large, medium and small fractions compared to
the reference case.

Different compounds were obtained for every fraction, by
adding 0.2 wt% of epoxy resin binder (organic layer). The resulting
systems were compacted at 700 MPa and cured in air at 150 ○C for
30 minutes. The resin addition provides electrical insulation and the
necessary mechanical strength. The binder percentage affects both
the magnetic and energetic properties of the composite,23,31 but,
due to the low annealing temperature, no metallurgical diffusion
process occurs between iron and binder. The energetic performances
of all fractions had previously been analysed in a recent work,45 in
which the reference case remained the best solution, as shown in
Fig. 1. It has to be pointed out that the small fraction is preferable
when working at a high operating frequency, while the large one is
best at low frequencies (<100 Hz). From an accurate analysis, the
small particles reduce the eddy currents losses while the large ones
lower the hysteresis losses. The medium fraction optimizes both
conditions in the analyzed frequency range. The loss curves of the
small and medium fractions are very near at 500 Hz, but the medium
one would grow quicker by further increasing the frequency.

In a subsequent phase, nine different powder mixes were com-
posed with the three initial fractions, obtaining nine different sizes
distributions. The identification name is proposed in the following
way: Epoxy SMC L%.M%.S%, for instance, Epoxy SMC 30.20.50.
All samples have been prepared with the same polymeric binder
(epoxy 0.2 wt%) and pressed at 700 MPa. The Table I shows the new
fractions.

IV. EXPERIMENTAL RESULTS
The measurement of the magnetic quantities is performed with

a “transformer approach” on Soft Magnetic Material toroidal spec-
imens made on purpose. The magnetization is provided using a
controlled source which guarantees distortion compensation of the
magnetic flux waveform (Total Harmonic Distortion below 1%) in a
frequency range from 0.25 Hz to 2000 Hz. The system and methods
are completely outlined in a previous work.31 The system is capable
of measuring all the magnetic and energetic properties for a single
frequency or in a frequency range.

Since this work focuses primarily on the energetic aspects of the
obtained materials, only a brief reference on the magnetic properties
and the mechanical strength is presented.
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TABLE I. Composition of proposed SMCs and magnetic characteristics at 50Hz: maximum magnetic permeability (µmax), magnetic induction B at 5000 A/m (B5000 A/m) and
magnetic field at 1T (H1 T).

Name % Large % Medium % Small µmax 50 Hz [-] B5000 A/m 50 Hz [T] H1 T 50 Hz [A/m]

Epoxy SMC 70.30.0 70 30 0 539 1.38 1823
Epoxy SMC 70.0.30 70 0 30 500 1.35 1992
Epoxy SMC 50.30.20 50 30 20 527 1.37 1841
Epoxy SMC 50.20.30 50 20 30 488 1.33 2043
Epoxy SMC 30.70.0 30 70 0 541 1.37 1819
Epoxy SMC 30.20.50 30 20 50 471 1.34 2076
Epoxy SMC 30.0.70 30 0 70 465 1.33 2102
Epoxy SMC 0.70.30 0 70 30 488 1.37 1955
Epoxy SMC 0.30.70 0 30 70 426 1.30 2367
Reference 30.50.20 30 50 20 510 1.41 1882

A. Magnetic properties
Magnetic tests were performed at 50 Hz to have a complete

overview of the magnetic properties of all the compounds. The
results showed better magnetic properties – mainly regarding the
magnetic permeability – for the powders with higher percentages of
large particles, as shown in Table I. From this analysis would emerge
that the fractions with the large particles would be the right choices,
but the detected data are not enough to properly evaluate the actual
performance of the particles sizes distributions. The reference pow-
der magnetic behaviour remains slightly better than the investigated
compositions; therefore for a correct selection of the particles sizes
distribution other tests need to be performed.

B. Energetic properties
The tests were performed at frequencies up to 500 Hz. For every

SMC sample, the specific iron losses at 1 T were detected at differ-
ent frequencies, as reported in the Fig. 2. Three discrete frequency
ranges were considered as a function of the typical operating con-
ditions: below 100 Hz, between 100 Hz and 250 Hz, and between
250 Hz and 500 Hz. It is, therefore, possible to order the samples

FIG. 2. Specific iron losses at 1 T as the function of frequency: different considered
frequency range.

in a ranking for any specific frequency range. In Table II each sys-
tem is identified by a different color. It is possible to note that the
large fraction has the lowest iron losses at low frequency, but for
the same systems, the losses increase rapidly over frequency. On the

TABLE II. Specific iron losses ranking as a function of frequency.

Frequency Range

Ranking <100 Hz 100-250Hz 250-500Hz

1 50.30.20 50.30.20 50.30.20
2 30.70.0 30.70.0 0.70.30
3 Reference 0.70.30 30.0.70
4 0.70.30 Reference Reference
5 70.30.0 30.0.70 30.20.50
6 70.0.30 30.20.50 30.70.0
7 30.0.70 0.30.70 0.30.70
8 30.20.50 70.0.30 70.0.30
9 50.20.30 50.20.30 50.20.30
10 0.30.70 70.30.0 70.30.0

FIG. 3. Specific iron losses SL (at different frequencies normalized to the reference
compound).
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TABLE III. Mechanical strength of proposed SMCs and reference case.

Composition Reference Epoxy SMC 50.30.20 Epoxy SMC 30.70.0 Epoxy SMC 0.70.30 Epoxy SMC 30.0.70

TRS [MPa] 85 47 71 51 39

other hand, the small fraction shows the opposite behaviour: the sys-
tems in which it is predominant have the lowest iron losses at high
frequency. Therefore the best solution involves correctly balancing
the medium sized particles with the other two fractions. The Epoxy
SMC 50.30.20 was the best for all frequencies. Moreover, three other
distributions, among the top three for every frequency range, have
been chosen for further evaluation: Epoxy SMC 30.70.0, Epoxy SMC
0.70.30, Epoxy SMC 30.0.70.

The results of the specific iron losses at 1 T of all the selected
SMC samples were expressed normalising the data to the reference
powder. In Fig. 3 the Epoxy SMC 50.30.20 shows the best energetic
properties for all the considered frequencies, while the Epoxy SMC
30.70.0 (italic in Table II) gives good results only at the lowest fre-
quencies, getting worse by increasing the frequency. Contrarily, the
Epoxy SMC 0.70.30 (italic in Table II) and Epoxy SMC 30.0.70 (italic
in Table II) show the lowest iron losses at high frequencies, but the
worst at low frequency. In any case, the test results put into evidence
that the energetic behaviour of the reference SMC is averagely worse
of many of the proposed compositions for all the considered fre-
quencies; the difference, compared to the best result (Epoxy SMC
50.30.20), is of about 4%.

C. Mechanical properties
The samples of all systems were mechanically characterised

with the three-point flection test,31,38 obtaining the material’s TRS
value, as reported in Table III. The mechanical strength is maxi-
mum for the original reference powder. Therefore the mechanical
properties seem to depend on the medium and large particles sizes
balance mainly. The results should be anyway considered together
with further micrographic analyses of the fractures to obtain relevant
information.

V. CONCLUSIONS
The ferromagnetic powder, as supplied by the producer, has

been sieved in three different fractions. From such fractions, nine
powder systems were composed having different particles sizes dis-
tributions. After that, the SMC samples were obtained by adding the
organic layer (epoxy resin 0.2 wt%). The magnetic, energetic and
mechanical properties have been detected and compared to those of
the reference SMC (original powder). As expected, the large particles
affect the magnetic and energetic performances at low frequencies,
while the small particles have a positive effect at higher frequencies.
The best energetic results were obtained with the following particles
sizes fractions 50.30.20, which is better than the reference SMC of
about 4%. The mechanical strength depends on the balancing of the
medium and large particles sizes fractions. The reference case has,
however, the best mechanical properties.

The work highlights the importance of the particles size in
determining the SMC performances. In future activities, other

powder mixes will be considered, and a careful study of the mechan-
ical strength as a function of the granulometry will be carried out.
Hopefully, it will be possible to optimise the SMC granulometry
starting from the design operating frequency.
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6L. Ferraris, P. Ferraris, E. Pošković, and A. Tenconi, “Theoretic and exper-
imental approach to the adoption of bonded magnets in fractional machines
for automotive applications,” IEEE Trans. On Ind. Electron. 59, 2309–2318
(2012).
7S. X. Bai, H. Zhang, L. Lv, K. Chen, S. Li, X. P. Yang, W. J. Jia, and H. N. Cai,
“Progress of research on bonded Nd-Fe-B magnet,” J. Iron and Steel Research 13,
489–493 (2006).
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Elektrotechniczny R89, 103–108 (2013).
11H. Nakamura, “The current and future status of rare earth permanent magnets,”
Scripta Materialia (in press).
12P. C. Dent, “Rare earth elements and permanent magnets,” J. Appl. Phys. 111,
07A721 (2012).
13B. E. Davies, R. S. Mottram, and I. R. Harris, “Recent developments in the
sintering of NdFeB,” Materials Chemistry and Physics 67, 272–281 (2001).
14F. Giulii Capponi, G. De Donato, and F. Caricchi, “Recent advances in axial-flux
permanent-magnet machine technology,” IEEE Trans. On Ind. Appl. 48, 2190–
2205 (2012).
15S. Kahourzade, N. Ertugrul, and W. L. Soong, “Investigation of emerging mag-
netic materials for application in axial-flux PM machines,” IEEE ECCE Conf.
Proc., Milwaukee (USA), 18–22 September 2016.
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materials for sensor applications,” IEEE SAS Conf. Proc., Catania (Italy), 20–22
April 2016, pp. 134–139.
36Q. Xing, M. K. Miller, L. Zhou, H. M. Dillon, R. W. McCallum, I. E. Anderson,
S. Constantinides, and M. J. Kramer, “Phase and elemental distributions in Alnico
magnetic materials,” IEEE Trans. on Magn. 49, 3314–3317 (2013).
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