1,523 research outputs found
Random dispersion approximation for the Hubbard model
We use the Random Dispersion Approximation (RDA) to study the Mott-Hubbard
transition in the Hubbard model at half band filling. The RDA becomes exact for
the Hubbard model in infinite dimensions. We implement the RDA on finite chains
and employ the Lanczos exact diagonalization method in real space to calculate
the ground-state energy, the average double occupancy, the charge gap, the
momentum distribution, and the quasi-particle weight. We find a satisfactory
agreement with perturbative results in the weak- and strong-coupling limits. A
straightforward extrapolation of the RDA data for lattice results in
a continuous Mott-Hubbard transition at . We discuss the
significance of a possible signature of a coexistence region between insulating
and metallic ground states in the RDA that would correspond to the scenario of
a discontinuous Mott-Hubbard transition as found in numerical investigations of
the Dynamical Mean-Field Theory for the Hubbard model.Comment: 10 pages, 11 figure
Uniform and staggered magnetizations induced by Dzyaloshinskii-Moriya interactions in isolated and coupled spin 1/2 dimers in a magnetic field
We investigate the interplay of Dzyaloshinskii-Moriya interactions and an
external field in spin 1/2 dimers. For isolated dimers and at low field, we
derive simple expressions for the staggered and uniform magnetizations which
show that the orientation of the uniform magnetization can deviate
significantly from that of the external field. In fact, in the limit where the
vector of the Dzyaloshinskii-Moriya interaction is parallel to the
external field, the uniform magnetization actually becomes {\it perpendicular}
to the field. For larger fields, we show that the staggered magnetization of an
isolated dimer has a maximum close to one-half the polarization, with a large
maximal value of in the limit of very small Dzyaloshinskii-Moriya
interaction. We investigate the effect of inter-dimer coupling in the context
of ladders with Density Matrix Renormalization Group (DMRG) calculations and
show that, as long as the values of the Dzyaloshinskii-Moriya and of the
exchange interaction are compatible with respect to the development of a
staggered magnetization, the simple picture that emerges for isolated dimers is
also valid for weakly coupled dimers with minor modifications. The results are
compared with torque measurements on
Cu(CHN)Cl.Comment: 8 pages, 9 figure
Frustrated three-leg spin tubes: from spin 1/2 with chirality to spin 3/2
Motivated by the recent discovery of the spin tube
[(CuCltachH)Cl]Cl, we investigate the properties of a frustrated
three-leg spin tube with antiferromagnetic intra-ring and inter-ring couplings.
We pay special attention to the evolution of the properties from weak to strong
inter-ring coupling and show on the basis of extensive density matrix
renormalization group and exact diagonalization calculations that the system
undergoes a first-order phase transition between a dimerized gapped phase at
weak coupling that can be described by the usual spin-chirality model and a
gapless critical phase at strong coupling that can be described by an effective
spin-3/2 model. We also show that there is a magnetization plateau at 1/3 in
the gapped phase and slightly beyond. The implications for
[(CuCltachH)Cl]Cl are discussed, with the conclusion that this
system behaves essentially as a spin-3/2 chain.Comment: 8 pages, 9 figures, revised versio
Condensation of magnons and spinons in a frustrated ladder
Motivated by the ever-increasing experimental effort devoted to the
properties of frustrated quantum magnets in a magnetic field, we present a
careful and detailed theoretical analysis of a one-dimensional version of this
problem, a frustrated ladder with a magnetization plateau at m=1/2. We show
that even for purely isotropic Heisenberg interactions, the magnetization curve
exhibits a rather complex behavior that can be fully accounted for in terms of
simple elementary excitations. The introduction of anisotropic interactions
(e.g., Dzyaloshinskii-Moriya interactions) modifies significantly the picture
and reveals an essential difference between integer and fractional plateaux. In
particular, anisotropic interactions generically open a gap in the region
between the plateaux, but we show that this gap closes upon entering fractional
plateaux. All of these conclusions, based on analytical arguments, are
supported by extensive Density Matrix Renormalization Group calculations.Comment: 15 pages, 15 figures. minor changes in tex
Visual Mining of Epidemic Networks
We show how an interactive graph visualization method based on maximal
modularity clustering can be used to explore a large epidemic network. The
visual representation is used to display statistical tests results that expose
the relations between the propagation of HIV in a sexual contact network and
the sexual orientation of the patients.Comment: 8 page
Tomonaga-Luttinger parameters for doped Mott insulators
The Tomonaga--Luttinger parameter determines the critical behavior
in quasi one-dimensional correlated electron systems, e.g., the exponent
for the density of states near the Fermi energy. We use the numerical
density-matrix renormalization group method to calculate from the
slope of the density-density correlation function in momentum space at zero
wave vector. We check the accuracy of our new approach against exact results
for the Hubbard and XXZ Heisenberg models. We determine in the phase
diagram of the extended Hubbard model at quarter filling, , and
confirm the bosonization results on the critical
line and at infinitesimal doping of the
charge-density-wave (CDW) insulator for all interaction strengths. The doped
CDW insulator exhibits exponents only for small doping and strong
correlations.Comment: 7 pages, 4 figure
Quantitative Margin Analysis in the Scanning Electron Microscope.
Interface between restorative materials and tooth hard substances must be morphologically as perfect as possible to avoid plaque accumulation and subsequent secondary caries or pulpal diseases. Therefore the marginal behavior of restorations is an important parameter to predict their longevity.
Morphologically, the quality of margins is characterized by different well defined criteria. Using a replica technique it is possible to assess the complete marginal circumference of restorations in the SEM. Margins of restorations show a large variety of their morphology. This publication describes a method to quantify the quality of dental restorations.
The restoration margins are traced on the SEM screen with a digitizer and an interface to measure the margin\u27s length. Simultaneously the margin quality is assessed and assigned to the corresponding lengths. The % distribution of the quality criteria for each restoration is then calculated. Using a comparative light microscope, the replicas are aligned and mounted identically in the SEM for longitudinal studies.
The results presented are limited to tests for the accuracy of the method. Using 5 criteria to characterize the margin quality, it was found that the difference between two measurements by the same operator, 4 weeks apart was 3% ± 2.6%. The largest difference for one group was 9%. In another accuracy test where 4 criteria for margin characterization were used, the difference between two measurements was 1.9% ± 0.9%. The largest difference between two groups found was 3.4%.
This method can be used for longitudinal studies in vivo, but also for in vitro screening tests with new materials
Enhanced Bound State Formation in Two Dimensions via Stripe-Like Hopping Anisotropies
We have investigated two-electron bound state formation in a square
two-dimensional t-J-U model with hopping anisotropies for zero electron
density; these anisotropies are introduced to mimic the hopping energies
similar to those expected in stripe-like arrangements of holes and spins found
in various transition metal oxides. In this report we provide analytical
solutions to this problem, and thus demonstrate that bound-state formation
occurs at a critical exchange coupling, J_c, that decreases to zero in the
limit of extreme hopping anisotropy t_y/t_x -> 0. This result should be
contrasted with J_c/t = 2 for either a one-dimensional chain, or a
two-dimensional plane with isotropic hopping. Most importantly, this behaviour
is found to be qualitatively similar to that of two electrons on the two-leg
ladder problem in the limit of t_interchain/t_intrachain -> 0. Using the latter
result as guidance, we have evaluated the pair correlation function, thus
determining that the bound state corresponds to one electron moving along one
chain, with the second electron moving along the opposite chain, similar to two
electrons confined to move along parallel, neighbouring, metallic stripes. We
emphasize that the above results are not restricted to the zero density limit -
we have completed an exact diagonalization study of two holes in a 12 X 2
two-leg ladder described by the t-J model and have found that the
above-mentioned lowering of the binding energy with hopping anisotropy persists
near half filling.Comment: 6 pages, 3 eps figure
Recommended from our members
Active Transport of Peptides Across the Intact Human Tympanic Membrane.
We previously identified peptides that are actively transported across the intact tympanic membrane (TM) of rats with infected middle ears. To assess the possibility that this transport would also occur across the human TM, we first developed and validated an assay to evaluate transport in vitro using fragments of the TM. Using this assay, we demonstrated the ability of phage bearing a TM-transiting peptide to cross freshly dissected TM fragments from infected rats or from uninfected rats, guinea pigs and rabbits. We then evaluated transport across fragments of the human TM that were discarded during otologic surgery. Human trans-TM transport was similar to that seen in the animal species. Finally, we found that free peptide, unconnected to phage, was transported across the TM at a rate comparable to that seen for peptide-bearing phage. These studies provide evidence supporting the concept of peptide-mediated drug delivery across the intact TM and into the middle ears of patients
- âŠ