research

Tomonaga-Luttinger parameters for doped Mott insulators

Abstract

The Tomonaga--Luttinger parameter KρK_{\rho} determines the critical behavior in quasi one-dimensional correlated electron systems, e.g., the exponent α\alpha for the density of states near the Fermi energy. We use the numerical density-matrix renormalization group method to calculate KρK_{\rho} from the slope of the density-density correlation function in momentum space at zero wave vector. We check the accuracy of our new approach against exact results for the Hubbard and XXZ Heisenberg models. We determine KρK_{\rho} in the phase diagram of the extended Hubbard model at quarter filling, nc=1/2n_{\rm c}=1/2, and confirm the bosonization results Kρ=nc2=1/4K_{\rho}=n_{\rm c}^2=1/4 on the critical line and KρCDW=nc2/2=1/8K_{\rho}^{\rm CDW}=n_{\rm c}^2/2=1/8 at infinitesimal doping of the charge-density-wave (CDW) insulator for all interaction strengths. The doped CDW insulator exhibits exponents α>1\alpha>1 only for small doping and strong correlations.Comment: 7 pages, 4 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019