849 research outputs found
Superposition as memory: unlocking quantum automatic complexity
Imagine a lock with two states, "locked" and "unlocked", which may be
manipulated using two operations, called 0 and 1. Moreover, the only way to
(with certainty) unlock using four operations is to do them in the sequence
0011, i.e., where . In this scenario one might think that the
lock needs to be in certain further states after each operation, so that there
is some memory of what has been done so far. Here we show that this memory can
be entirely encoded in superpositions of the two basic states "locked" and
"unlocked", where, as dictated by quantum mechanics, the operations are given
by unitary matrices. Moreover, we show using the Jordan--Schur lemma that a
similar lock is not possible for .
We define the semi-classical quantum automatic complexity of a
word as the infimum in lexicographic order of those pairs of nonnegative
integers such that there is a subgroup of the projective unitary
group PU with and with such that, in terms of a
standard basis and with , we have
and for all with . We show that is
unbounded and not constant for strings of a given length. In particular, and
.Comment: Lecture Notes in Computer Science, UCNC (Unconventional Computation
and Natural Computation) 201
A note on the Zassenhaus product formula
We provide a simple method for the calculation of the terms c_n in the
Zassenhaus product for
non-commuting a and b. This method has been implemented in a computer program.
Furthermore, we formulate a conjecture on how to translate these results into
nested commutators. This conjecture was checked up to order n=17 using a
computer
De Finetti's construction as a categorical limit
This paper reformulates a classical result in probability theory from the
1930s in modern categorical terms: de Finetti's representation theorem is
redescribed as limit statement for a chain of finite spaces in the Kleisli
category of the Giry monad. This new limit is used to identify among
exchangeable coalgebras the final one.Comment: In proceedings of CMCS 202
Curved Noncommutative Tori as Leibniz Quantum Compact Metric Spaces
We prove that curved noncommutative tori, introduced by Dabrowski and Sitarz,
are Leibniz quantum compact metric spaces and that they form a continuous
family over the group of invertible matrices with entries in the commutant of
the quantum tori in the regular representation, when this group is endowed with
a natural length function.Comment: 16 Pages, v3: accepted in Journal of Math. Physic
Interpretations of Presburger Arithmetic in Itself
Presburger arithmetic PrA is the true theory of natural numbers with
addition. We study interpretations of PrA in itself. We prove that all
one-dimensional self-interpretations are definably isomorphic to the identity
self-interpretation. In order to prove the results we show that all linear
orders that are interpretable in (N,+) are scattered orders with the finite
Hausdorff rank and that the ranks are bounded in terms of the dimension of the
respective interpretations. From our result about self-interpretations of PrA
it follows that PrA isn't one-dimensionally interpretable in any of its finite
subtheories. We note that the latter was conjectured by A. Visser.Comment: Published in proceedings of LFCS 201
Non-Linear N-Parameter Spacetime Perturbations: Gauge Transformations
We introduce N-parameter perturbation theory as a new tool for the study of
non-linear relativistic phenomena. The main ingredient in this formulation is
the use of the Baker-Campbell-Hausdorff formula. The associated machinery
allows us to prove the main results concerning the consistency of the scheme to
any perturbative order. Gauge transformations and conditions for gauge
invariance at any required order can then be derived from a generating
exponential formula via a simple Taylor expansion. We outline the relation
between our novel formulation and previous developments.Comment: 7 pages, no figures, RevTeX 4.0. Revised version to match version
published in PR
An efficient algorithm for computing the Baker-Campbell-Hausdorff series and some of its applications
We provide a new algorithm for generating the Baker--Campbell--Hausdorff
(BCH) series Z = \log(\e^X \e^Y) in an arbitrary generalized Hall basis of
the free Lie algebra generated by and . It is based
on the close relationship of with a Lie algebraic structure
of labeled rooted trees. With this algorithm, the computation of the BCH series
up to degree 20 (111013 independent elements in ) takes less
than 15 minutes on a personal computer and requires 1.5 GBytes of memory. We
also address the issue of the convergence of the series, providing an optimal
convergence domain when and are real or complex matrices.Comment: 30 page
Quantum Noise Limits for Nonlinear, Phase-Invariant Amplifiers
Any quantum device that amplifies coherent states of a field while preserving
their phase generates noise. A nonlinear, phase-invariant amplifier may
generate less noise, over a range of input field strengths, than any linear
amplifier with the same amplification. We present explicit examples of such
nonlinear amplifiers, and derive lower bounds on the noise generated by a
nonlinear, phase-invariant quantum amplifier.Comment: RevTeX, 6 pages + 4 figures (included in file; hard copy sent on
request
Long range correlation in cosmic microwave background radiation
We investigate the statistical anisotropy and Gaussianity of temperature
fluctuations of Cosmic Microwave Background radiation (CMB) data from {\it
Wilkinson Microwave Anisotropy Probe} survey, using the multifractal detrended
fluctuation analysis, rescaled range and scaled windowed variance methods. The
multifractal detrended fluctuation analysis shows that CMB fluctuations has a
long range correlation function with a multifractal behavior. By comparing the
shuffled and surrogate series of CMB data, we conclude that the multifractality
nature of temperature fluctuation of CMB is mainly due to the long-range
correlations and the map is consistent with a Gaussian distribution.Comment: 10 pages, 7 figures, V2: Added comments, references and major
correction
Pedestrian Solution of the Two-Dimensional Ising Model
The partition function of the two-dimensional Ising model with zero magnetic
field on a square lattice with m x n sites wrapped on a torus is computed
within the transfer matrix formalism in an explicit step-by-step approach
inspired by Kaufman's work. However, working with two commuting representations
of the complex rotation group SO(2n,C) helps us avoid a number of unnecessary
complications. We find all eigenvalues of the transfer matrix and therefore the
partition function in a straightforward way.Comment: 10 pages, 2 figures; eqs. (101) and (102) corrected, files for fig. 2
fixed, minor beautification
- …