108 research outputs found

    Searching for Primordial Black Holes with the Einstein Telescope: impact of design and systematics

    Full text link
    Primordial Black Holes (PBHs) have recently attracted much attention as they may explain some of the LIGO/Virgo/KAGRA observations and significantly contribute to the dark matter in our universe. The next generation of Gravitational Wave (GW) detectors will have the unique opportunity to set stringent bounds on this putative population of objects. Focusing on the Einstein Telescope (ET), in this paper we analyse in detail the impact of systematics and different detector designs on our future capability of observing key quantities that would allow us to discover and/or constrain a population of PBH mergers. We also perform a population analysis, with a mass and redshift distribution compatible with the current observational bounds. Our results indicate that ET alone can reach an exquisite level of accuracy on the key observables considered, as well as detect up to tens of thousands of PBH binaries per year, but for some key signatures (in particular high--redshift sources) the cryogenic instrument optimised for low frequencies turns out to be crucial, both for the number of observations and the error on the parameters reconstruction. As far as the detector geometry is concerned, we find that a network consisting of two separated L--shaped interferometers of 15 (20)~km arm length, oriented at 45∘45^{\circ} with respect to each other performs better than a single triangular shaped instrument of 10 (15)~km arm length, for all the metrics considered.Comment: 24 pages, 13 figure

    Cosmology with the Laser Interferometer Space Antenna

    Get PDF
    The Laser Interferometer Space Antenna (LISA) has two scientific objectives of cosmological focus: to probe the expansion rate of the universe, and to understand stochastic gravitational-wave backgrounds and their implications for early universe and particle physics, from the MeV to the Planck scale. However, the range of potential cosmological applications of gravitational wave observations extends well beyond these two objectives. This publication presents a summary of the state of the art in LISA cosmology, theory and methods, and identifies new opportunities to use gravitational wave observations by LISA to probe the universe

    Mechanisms for primordial black hole production in string theory

    Get PDF
    We consider mechanisms for producing a significant population of primordial black holes (PBHs) within string inspired single field models of inflation. The production of PBHs requires a large amplification in the power spectrum of curvature perturbations between scales associated with CMB and PBH formation. In principle, this can be achieved by temporarily breaking the slow-roll conditions during inflation. In this work, we identify two string setups that can realise this process. In string axion models of inflation, subleading non-perturbative effects can superimpose steep cliffs and gentle plateaus onto the leading axion potential. The cliffs can momentarily violate the slow-roll conditions, and the plateaus can lead to phases of ultra slow-roll inflation. We thus achieve a string motivated model which both matches the Planck observations at CMB scales and produces a population of light PBHs, which can account for an order one fraction of dark matter. In DBI models of inflation, a sharp increase in the speed of sound sourced by a steep downward step in the warp factor can drive the amplification. In this scenario, discovery of PBHs could indicate non-trivial dynamics in the bulk, such as flux-antibrane annihilation at the tip of a warped throat

    Anion and cation permeability of a chloride channel in rat hippocampal neurons.

    No full text

    OpenMP Parallelization Strategies for a Discontinuous Galerkin Solver

    No full text
    This paper aims to report on the open multi-processing (OpenMP) parallel implementation of a fully unstructured high-order discontinuous Galerkin (DG) solver for computational fluid dynamics and computational aeroacoustics applications. Even if the use of OpenMP paradigm is confined to shared memory systems, it has some advantages over the use of the message passing interface (MPI) library, and getting the best of this approach potentially improves the parallel efficiency of codes running on clusters of multi-core nodes. While with MPI the use of a domain decomposition algorithm is almost unavoidable, the OpenMP shared memory context offers several opportunities. Three strategies, here optimised for a DG solver, are presented and compared: the first refers to a customization of a colouring approach, the second mimics an MPI implementation in the OpenMP context, while the third method is somehow half way between the previous two. The numerical tests performed on both inviscid and viscous test cases indicate that, thanks to the compactness of the DG discretization, all the code versions perform quite satisfactory. In particular, the domain decomposition algorithm reaches the highest level of parallel efficiency at low computational loads while the colouring approach excels at larger computational loads and it can be easily implemented within an existing MPI code. Moreover, colouring is very well suited to deal with hardware accelerators, an opportunity given by the OpenMP 4.0 standard. Finally, the performance gain observed in using a hybrid MPI/OpenMP version of the DG code on high performance computing facilities is demonstrated

    Implications of the detection of primordial gravitational waves for the Standard Model

    No full text
    The detection of primordial gravitational waves would not only have extraordinary implications for our understanding of early cosmology, but would also give non-trivial constraints on Standard Model parameters, under the assumption that no new physics enters below the Higgs instability scale. We study the resulting bounds on the top quark mass and the strong coupling constant, discussing their theoretical uncertainties and their robustness against changes in other parameters
    • …
    corecore