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Abstract

We consider mechanisms for producing a significant population of primordial black holes

(PBHs) within string inspired single field models of inflation. The production of PBHs

requires a large amplification in the power spectrum of curvature perturbations between

scales associated with CMB and PBH formation. In principle, this can be achieved by

temporarily breaking the slow-roll conditions during inflation. In this work, we identify

two string setups that can realise this process. In string axion models of inflation, sub-

leading non-perturbative effects can superimpose steep cliffs and gentle plateaus onto the

leading axion potential. The cliffs can momentarily violate the slow-roll conditions, and

the plateaus can lead to phases of ultra slow-roll inflation. We thus achieve a string moti-

vated model which both matches the Planck observations at CMB scales and produces a

population of light PBHs, which can account for an order one fraction of dark matter. In

DBI models of inflation, a sharp increase in the speed of sound sourced by a steep down-

ward step in the warp factor can drive the amplification. In this scenario, discovery of

PBHs could indicate non-trivial dynamics in the bulk, such as flux-antibrane annihilation

at the tip of a warped throat.
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1 Introduction

In the early 1970s, Stephen Hawking proposed that overdense inhomogeneities in the very

early Universe could gravitationally collapse to form Primordial Black Holes (PBHs) [1, 2].

Assuming the Planck length as the minimal possible Schwarzchild radius, gives a lower

limit for black holes masses of about 10−5g. Morever, this mechanism – in contrast to

the astrophysical process from dying stars – allows for populations of black holes spanning

a vast range of masses, from the Planck scale to supermassive and beyond. Constraints

on PBHs abundances continue to improve, but leave viable windows, especially when

astrophysical uncertainties are taken into account (see [3, 4] for recent reviews).

PBHs could provide a significant fraction – or indeed all – of the mysterious Dark

Matter that dominates cosmic structures in the present day Universe. Stimulated both by

the absence of signatures for well-motivated particle candidates for Dark Matter and by

the first detection of gravity waves from merging black holes, this idea has recently taken

new flight. The principal modern process for PBH production is the collapse of curvature

perturbations generated during early Universe cosmic inflation, when the relevant scales

re-enter the horizon during the radiation era [5]. However, the big challenge here is that the

amplitude of these inflationary curvature perturbations at the large scales probed by the

CMB has been constrained by observations to be tiny, As ∼ 10−9 at the pivot scale k = 0.05

Mpc−1. In order for inflationary perturbations to lead to a significant PBH population there

must be some mechanism at work that enhances the power spectrum to around As ∼ 10−2

at some smaller scale. For example, a large enhancement at scales around k ∼ 1012 − 1014

Mpc−1 would lead to PBHs masses in the window 10−17M� . MPBH . 10−13M�, which

could be a dominant component of Dark Matter consistently with current observational

constraints1.

Many recent works have explored how such an enhancement could be achieved. As

current CMB observations are consistent with the simplest, single field slow-roll models,

much of the focus has been to explore scenarios producing PBHs in single field inflation

[7–11]. A possibility is that the inflaton rolls down a slow-roll plateau, probed by the CMB

observations, followed by a near-inflection point which leads to a phase of ultra slow-roll.

Roughly, the extreme flattening of the inflationary potential around the inflection point

leads to an enhanced amplitude of scalar perturbations. Whilst such a potential can cer-

tainly be manufactured within effective field theory, ultimately its shape – and robustness

against quantum corrections – would have to be explained within a fundamental theory,

like string theory. For example, an attempt towards embedding this model within string

theory via fine-tuned string-loop corrections in fibre inflation has been made very recently

in [12], although it has not yet proved possible to fine-tune a setup such that cosmological

1A possible obstacle for PBH’s as Dark Matter in this mass range is the constraints arise due to capture
of PBH by stars during their formation which may limit the PBH abundance to no more than one percent
of the Dark Matter density [6].

2



perturbations both match the CMB and produce significant PBH Dark Matter.

The purpose of this paper is to identify well-motivated string mechanisms that can lead

to an amplification of curvature perturbations and thus significant PBH production in the

early Universe. To do so, it is helpful to recall the physical conditions underlying this

amplification, first discussed by Leach et al. [13, 14]2. In slow-roll inflation, the equation

that governs the curvature perturbation takes the form of a damped harmonic oscillator.

Solutions for super-horizon modes correspond to a linear combination of a constant and a

decaying mode. However, if the slow-roll conditions are broken, then the friction term in

the damped harmonic oscillator equation can become a driving term, so that the decaying

mode becomes a growing mode, and enhances the curvature perturbation on scales beyond

the horizon. This enhancement continues until the slow-roll conditions are restored. (A

similar mechanism has been used to build single field models with large squeezed non-

Gaussianity [16].)

The first possible scenario that we propose is based upon an earlier observation on

how subleading, non-perturbative effects can affect axion inflation [17] 3. In string axion

inflation, the perturbative axion shift symmetry is broken spontaneously by background

vevs (e.g. fluxes), such as in axion monodromy [23, 24] and/or non-perturbative effects

(e.g. string instantons), leading to large field inflation models with monomial or cosine

(“natural inflation” [25]) potentials. In [17], we noted that subleading non-perturbative

effects – if sufficiently large – can superimpose periodically steep cliffs and gentle plateaus

onto the underlying potential. The overall effect shown there was to restore axion inflation

into the favour of current CMB observations, by allowing sufficient efolds of inflation to

be obtained with smaller field ranges and thus lowering the tensor-to-scalar ratio, even

achieving natural inflation with sub-Planckian axion decay constants. Here we note that

such an inflationary potential can also quite naturally give rise to an enhancement in the

scalar power spectrum at small scales, as the inflaton meets successively shallower plateaus

on its roll towards the global minimum. Depending on the parameters, the cliffs may

temporarily halt inflation, and the plateaus may include (near-)inflection points around

which ultra slow-roll inflation occurs. By connecting to the heuristic arguments above,

and analysing numerically the cosmological perturbations, we show that such models can

both lie within 2σ constraints from Planck results, and produce a population of light PBH

(about 10−16 − 10−15M�) that provides a signification fraction of Dark Matter.

The second string motivated mechanism for the amplification of power during inflation

that we propose is based on single field models of inflation with non-canonical kinetic

terms, as for example DBI inflation [26, 27]. To understand what features are required

within these models, we extend the Leach et al. argument on amplification of super-horizon

2Note however, the first toy model that can amplify the power in scalar fluctuations is proposed by
Starobinsky [15].

3Other papers studying PBH production in axion inflation are [18–22], although they do not work in
a single field system, since they couple the axion to gauge fields or include a spectator sector coupled to
gauge fields.
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modes to include varying speed of sound. We find that a driving term emerges in the mode

equation if the speed of sound increases sufficiently fast. A simple way to achieve this is if

the warp factor experienced by the D-brane sourcing inflation features a sufficiently large4

and steep step during the inflationary trajectory. A large step in the warp factor could

occur for instance, if the D-brane travels down a throat within a throat, sourced by two

separated stacks of D-branes [31, 32].

Another scenario could be that during the D-brane’s journey down the throat, an in-

stability towards brane-antibrane or flux-antibrane [33] annihilation occurs at the tip of

the throat. In this scenario, observations of a population of PBHs would reveal interesting

properties of branes exploring the geometry of the string compactification.

The paper is organised as follows. In the following section, we provide a brief review

of the basic physical mechanism which leads to the enhancement of the amplitude of

curvature perturbation during inflation, subsequently leading to the production of PBHs.

In Section 3, we review and develop models of string axion inflation including subleading

non-perturbative effects, describing their background evolution and predictions at the CMB

scales. We then investigate numerically the amplification of scalar power spectrum at

small scales. In particular, we provide two explicit models which both concord with CMB

observations and produce PBHs sufficient to explain a significant fraction of Dark Matter.

In Section 4, we turn our attention to DBI models of inflation with a large step feature

in the warp factor. We study the background evolution and the equation governing the

curvature perturbations, and thus provide heuristic arguments for the amplification of

curvature perturbations, postponing a detailed numerical analysis of the perturbations to

future work. Finally, in Section 5 we present our conclusions and point towards several

open questions to which our work leads.

We will use natural units, ~ = c = 1, with reduced Planck mass M2
pl = (8πG)−1. Our

metric signature is mostly plus (−,+,+,+). The background metric is a FRW universe

with line element ds2 = −dt2 +a2(t) d~x2 = a2(τ) (−dτ 2 + d~x2). The overdots and primes

on time dependent quantities denote derivatives with respect to coordinate time t and

conformal time τ , respectively. During inflation, we take a(τ) = 1/(−Hτ)1+ε with H is

the physical Hubble rate.

2 Enhancing the amplitude of curvature fluctuations in single

field inflation

As discussed in the introduction, the production of PBHs from inflation requires that the

spectrum of curvature fluctuations has to increase by a factor of ∼ 107 in its amplitude

at scales well below CMB scales. Such enhanced primordial curvature fluctuations induce

large matter density fluctuations at horizon re-entry, which can collapse to form PBHs.

4See [28, 29] for an analyisis of the effects on brane inflation of the tiny, sharp steps in the warp factor
caused by quantum corrections in Seiberg duality cascades [30].
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At leading order in slow-roll, the amplitude of the scalar power spectrum in single field

inflation with canonical kinetic terms reads

∆2
s =

1

4π2

H4

|φ̇|2

∣∣∣∣
k=aH

, (2.1)

where H is the Hubble parameter, and φ̇ denotes the time derivative of the inflaton.

Deviations from a slow-roll regime can change this expression, but at first sight it seems

hard to increase its value by several orders of magnitude within a well-defined range of

scales, without spoiling inflation. On the other hand, various recent works have succeeded

in doing so [7], by using inflationary potentials with inflection points. In the inflection

point regions of the potential the inflaton dynamics experiences a rapid speed decrease,

and enters into a so-called ultra slow-roll regime during which the amplitude of ∆2
s can

indeed be enhanced by several orders of magnitude.

A heuristic, physically transparent explanation for this phenomenon can be found in

works by Leach and Liddle [13] and Leach et al. [14]. We review their argument here,

using it as guideline for the discussion we develop in the remaining sections.

The mode equation for curvature fluctuations of wavenumber k in single field inflation

reads

R′′k + 2
z′

z
R′k + k2Rk = 0, (2.2)

where the “pump field” for the curvature perturbation defined as z ≡ aφ̇/H satisfies:

z′

z
= aH (1 + ε− δ) . (2.3)

In this expression, the standard slow-roll parameters ε and δ are defined as

ε ≡ − Ḣ

H2
, (2.4)

δ ≡ − Ḧ

2HḢ
= − ε̇

2 εH
+ ε . (2.5)

At a given moment of time during inflation, ε < 1, while δ can be in principle of any size.

Notice that the mode equation in (2.2) is of the form of a damped harmonic oscillator. In

the standard slow-roll limit ε, δ � 1, we focus on modes Rk which already left the horizon

(i.e. k < |z′/z|).
The solution to equation (2.2) can then be expressed as

Rk(τ) = C1 + C2
∫

dτ

z2
(2.6)

where C1 and C2 are two integration constants, multiplying respectively the constant and
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decaying solutions to the equation (2.2). Since equation (2.3) implies

z(a) = z0 exp

[∫
(1 + ε− δ) d ln a

]
(2.7)

with z0 a constant, we learn that z ∼ a in the limit where the slow-roll parameters ε and δ

can be neglected. Since in such limit a ∼ −1/(Hτ), the decaying mode proportional to C2
rapidly decays as a−3 outside the horizon, and the curvature perturbation is then conserved

at super-horizon scales, being controlled by the constant mode C1. After matching with the

Bunch-Davies vacuum at sub-horizon scales, one obtains the power spectrum amplitude of

eq. (2.1) at leading order in a slow-roll approximation.

Departure from the slow-roll regime suggests a way to enhance the amplitude of curva-

ture perturbations for modes at certain scales, right after they cross the horizon. Suppose

that the friction term proportional to z′/z in (2.2) transiently changes sign for some short

interval during the inflationary homogeneous evolution:

1 + ε− δ < 0 . (2.8)

In this case, the friction becomes a driving term in the equation (2.2): the exponent in

eq (2.7) becomes negative, hence z decreases with time instead of increasing, implying

that the mode proportional to C2 appearing in eq (2.6) is growing in this regime. Its

contribution to the curvature perturbation can become substantial, increasing the size of

R. The once-decaying, now-growing mode C2 can thus be exploited to enhance the power

spectrum of curvature fluctuations during a short range of scales [14]. Since ε is positive

and at most order one, the condition (2.8) requires δ to be at least order one, implying

that this can occur through a transition to fast-roll (where δ = 1), during which the slow-

roll approximation breaks down. In particular, the ultra slow-roll regime mentioned above

(and that we shall discuss more at length later on) corresponds to a phase during which

δ ≥ 3.

This is the basic physical mechanism we intend to exploit to enhance the power spectrum

at small scales, and thus produce PBHs. We will apply and generalise it to two string

motivated scenarios for single field inflation, the first being based on axion inflation, the

second D-brane inflation with non-canonical kinetic terms.

3 PBHs in axion inflation with subleading non-perturbative ef-

fects

In this section we analyse in full detail a string motivated model for axion inflation, which

includes next-to-leading, non-perturbative contributions to a monomial potential. We

proceed as follows
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• We start by presenting the theoretical motivations underlying this system. We show

how subleading, non-perturbative corrections to the axion potential can qualitatively

alter the homogeneous dynamics of the inflaton field, and work out the corresponding

time evolution of the slow-roll parameters (Sections 3.1-3.3).

• We continue in Sections 3.4-3.5 by numerically studying the dynamics of curvature

fluctuations in two concrete models based on this set-up, showing that they can be

in good agreement with CMB measurements (typically predicting a large value for

the running parameter αs), and at the same time produce an enhancement of the

curvature power spectrum at small scales, exploiting the argument of Section 2.

• In Section 3.6 we then show that our models produce a monochromatic population

of light PBHs that can provide a considerable fraction of Dark Matter density. We

discuss observational constraints on our PBH features, and further constraints that

the production mechanism imposes on the cosmological evolution after inflation ends.

3.1 Bumpy inflation

We consider a scenario that is based upon an earlier observation on how subleading, non-

perturbative effects can alter axion inflation [17]. In string axion inflation, the perturbative

axion shift symmetry is broken spontaneously by background vevs (e.g. fluxes) or non-

perturbative effects (e.g. string instantons), leading to large field inflation models with

monomial or cosine (“natural inflation”) potentials. In [17], we noted that subleading

non-perturbative corrections – if sufficiently large – can superimpose oscillations onto the

underlying potential. The size of these effects will depend on the vev’s of fluxes and

other moduli, which are already stabilised. Therefore, they may be tiny, large enough to

introduce new local minima and maxima that may halt inflation, or anything in between.

We focus on an intermediate situation, where step-like features are induced in the potential,

with steep cliffs and gentle plateaus, which transiently induce large deviations from the

slow-roll attractor regime.

For concreteness, we consider a string-inspired model with axion, φ, with a canonical

kinetic term and minimal coupling to gravity:

L√
−g

=
M2

pl

2
R− 1

2
∂µφ∂

µφ− V (φ), (3.1)

where the axion potential takes the following form

V (φ) = V0 +
1

2
m2φ2 + Λ4

1

φ

f
cos

(
φ

f

)
+ Λ4

2 sin

(
φ

f

)
. (3.2)

This class of potentials is known to arise from string theory constructions [34–37]5.

5For example, the potential of the form above arises for an axion Im(Z) - after having fixed the saxion
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The background dynamics of the inflaton depends on the size of the non-perturbative

corrections compared to the mass term in the potential (3.2), in particular on the ratios

βi ≡ Λ4
i /m

2f 2. In the limit βi → 0 (i = 1, 2), non-perturbative corrections become

negligible and we recover the usual smooth quadratic potential. For βi > 1, one introduces

a large number of new stationary points (where V ′ = 0) into the smooth φ2 potential in a

given range of field values. In this case, the classically rolling scalar field might eventually

get stuck into some local minimum depending on the initial conditions [38]. In this work,

we focus on the parameter space where βi < 1 for both i = 1, 2, but without assuming

βi � 1.

To illustrate the general shape of the potential we are interested in, in Figure 1 we plot

V (φ) in (3.2) and its slope for the parameters

β1 ' 0.86 , β2 ' 0.25 , Mpl/f = 1.6 , (Case 1) (3.3)

while V0 is chosen to ensure that the potential is vanishing at the minimum. The non-

perturbative corrections, being subleading but considerable, introduce plateau-like regions

connected by steep cliffs. Notice that the slope of the potential, V ′, is positive for a large

range of φ values but gradually decreases until it eventually vanishes at a shallow local

minimum when φ ∼ 1.35Mpl. One can expect the dynamics to be such that an initially

displaced φ rolls down in its wiggly potential, passing through the local minimum, and

eventually settling on its global minimum at φ = 0 [17]. In the upcoming sections, we will

elaborate on the interesting dynamics that arises due to the presence of a shallow local

minimum, shortly before the global minimum.

3.2 Background evolution – slow roll, fast roll

We now study the inflationary dynamics that arises from the Lagrangian (3.1) and (3.2) on

a flat FRW background. Using the number of e-folds, N(t) = ln a(t), as the time variable,

the system is governed by the following set of equations:

H2 =
V (φ)

M2
pl(3− ε)

,

d2φ

dN2
+ (3− ε) dφ

dN
+

1

H2
V ′(φ) = 0, (3.4)

where ε is the standard Hubble slow-roll parameter,

ε = − Ḣ

H2
=

1

2M2
pl

(
dφ

dN

)2

. (3.5)

Re(Z) - from a Kähler potential K = − ln(Z + Z̄), superpotential W = W0 +MZ + iΛe−bZ and an uplift
term, motivated e.g. by fluxes and non-perturbative effects. The coefficients in the potential will then
depend on the fluxes W0,M,Λ, as well as the vev of the saxion.
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Figure 1. Potential V (φ) (left, orange) in (3.2) and its derivative V ′(φ) (right, orange) for
parameters β1 ≡ Λ4

1/m
2f2 = 0.86, β2 ≡ Λ4

2/m
2f2 = 0.25 and Mpl/f = 1.6, in comparison to the

case of smooth quadratic potential Vsm(φ) ∝ φ2 (black, dashed). The gray dotted line on the
right plot is shown to guide the eye towards V ′(φ) = 0.
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Figure 2. Background solution φ(N) (left) and H(N)/m (right) in the bumpy potential (3.2)
with the initial condition φ(0) = 12.2 Mpl where β1, β2 and Mpl/f are taken to be the same as
in Figure 1.

We numerically solve the set of equations (3.4) and (3.5) assuming initially we are in the

slow-roll attractor regime, defined by the condition

dφ

dN
= −V

′(φ)

V (φ)
. (3.6)

In this way, we set all the initial conditions required to solve the system only using a given

initial φ value. As an example, we set φ(Nin = 0) = 12.2Mpl, and plot the solutions to

(3.4) as a function of e-folds during inflation in Figure 2.

We find that the inflaton slowly rolls down the smooth plateau-like regions, sustaining

9



an almost constant Hubble friction. However, whenever it meets a cliff, the inflaton speeds

up quickly, until it reaches the next plateau where Hubble friction rapidly slows it right

back down again [17]. Notice also that the strength of the acceleration down the cliffs

increases as the field rolls down to small field values. The system is in a slow-roll attractor

regime within the plateaus, but departs from slow-roll during the acceleration and fast

roll through the steeper cliffs and the during the deceleration when rolling into the flat

plateaus from the steep cliffs.

This behaviour can be seen from Figure 3 where we plot the evolution of the slow-roll

parameter ε together with the parameter:

δ ≡ − Ḧ

2HḢ
= − φ̈

φ̇H
, (3.7)

with respect to e-folds N . We see peaks in the slow-roll parameter ε and oscillations in δ

as φ accelerates (δ < 0) down the steep cliffs and decelerates (δ > 0) into the plateaus6.

Note that although ε increases quite considerably at around N ≈ 62, we still have ε < 1,

hence the accelerated spacetime expansion does not terminate here. Inflation lasts until

Ntot ' 90 e-folds7 where ε = 1, and φ begins to settle at its global minimum.

Parameter choices for the axion potential (3.2) are also possible such that φ rolls down

the last cliff so fast that ε becomes larger than unity for a short period of time – temporarily

halting inflation – before it rapidly decelerates at the plateau, and resumes inflation. In

Figures 6,7 and 8, we present such a model, numerically solving (3.4) with parameters

β1 ' 0.9 , β2 ' 0.16 , Mpl/f = 1.7 , (Case 2) (3.8)

and the initial condition φ(0) = 11.55 Mpl.

3.3 Ultra slow-roll phase

The most important feature of the bumpy potential (3.2) is the behaviour of φ after the

last cliff and through the local minimum towards the global one. Let us discuss the Case

1 parameters in eq (3.3), as Case 2 is very similar. As shown in Figure 4, at around

N & 62, the inflaton starts to decelerate enormously, while the slow-roll condition, δ < 1

is violated for about ∆N ≈ 4 e-folds during which δ reaches a maximum value of8 δ & 3.

During the time where δ > 1, the friction term in the Klein-Gordon (KG) equation is

not balanced by the slope of the potential as in the standard slow-roll attractor case but

6Note that in our conventions, the field rolls down from large to small values: this implies that the
velocity is φ̇ < 0, and acceleration corresponds to φ̈ < 0. Hence acceleration (deceleration) of the inflaton
corresponds to the case where δ < 0 (δ > 0).

7Note that only the last ∼ 65 e-folds or so of inflation have observational consequences.
8By definition, δ ≡ 3 + V ′(φ)/(φ̇H) using the KG equation in cosmological time. This explains why

δ > 3 during ultra slow-roll as V ′ < 0 around the inflection point (See e.g. , Figure 5).
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Figure 3. Evolution of the Hubble slow-roll parameters ε (left) and δ together with ε (right) as
a function of e-folds N .
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Figure 4. Evolution of ε in a logarithmic scale as a function of e-folds (left). Zoomed in plot for
δ together with ε around the time where δ > 1 corresponding to the evolution of the inflaton φ
after the last cliff in the potential (3.2) (See e.g. , Figure 5).

with the acceleration term in (3.4), and shortly after the system enters an ‘ultra slow-roll’

regime where ε� 1 and δ & 3 [39–42].

The ultra slow-roll behaviour of the inflaton can also be understood from the shape of

the potential after the last cliff, shown in Figure 5: by the end of the cliff, φ will be rolling

very fast, allowing it to overshoot the local minimum, and pass through an inflection point

– shown in Figure 5 – during which it decelerates with breaks on. As the acceleration term

in the Klein Gordon equation dominates over the slope of the potential in this region, the

velocity of the field decreases quickly9, i.e. ε ∼ e−(2δ)N where δ & 3 (See Figure 4). Note

that although this regime is dubbed ‘ultra slow-roll’, the inflaton actually traverses the

9In single field inflation with canonical kinetic terms, the definition of the slow-roll parameter δ implies
d ln φ̇ = −δ dN . Assuming a constant δ during the ultra slow-roll regime gives ε ∼ e−(2δ)N .
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Figure 5. The shape of the potential V (φ) in (3.2) after the last cliff (left) and the behaviour
of V ′(φ) and V ′′(φ) in the same field range (right) with the same parameter choices as in Figure
1. Blue points in both graphs represents the points where V ′ = 0 whereas the red dot is an
inflection point where V ′′ = 0.

relevant part of the potential very quickly (in a few e-folds) by flying over its decreasing

kinetic energy. After φ climbs the hill shown in Figure 5, the system is back into its

slow-roll attractor regime and stays in it until inflation ends.

In summary, the existence of sizeable non-perturbative corrections to the axion potential

can lead to steep cliffs and gentle plateaus in the potential, including a local minimum,

inflection point and maximum preceding the global minimum. We showed that in the

presence of such a feature in the potential, the system enters into the ultra slow-roll

regime for a few e-folds during which the slow-roll condition δ � 1 is violated. Such an

order one violation of the slow-roll condition around a (near-)inflection point can lead to

an enhancement of the primordial curvature power spectrum10, in accordance with the

arguments we reviewed in Section 2. We will discuss this enhancement for our model and

the associated phenomenology for PBH as Dark Matter in Sections 3.5 and 3.6. Before

focusing on this phenomenology at small scales, we need to make sure that the predictions

of our model are in agreement with the observations at the CMB scales. This will be the

topic of the following subsection.

3.4 Phenomenology at CMB scales

We have seen that during the inflationary epoch, the slow-roll parameters undergo large

oscillations when the field rolls down the steep cliffs and into the plateaus of the potential

(3.2). However, during the short range of e-folds that is associated with CMB scales

(e.g. between N = 20 and N = 30 in both cases we considered), the slow-roll parameters

can be small and smoothly varying [17].

10See for example [43] for a general discussion.
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Figure 6. Background solution to φ(N) (left) and H(N)/m (right) in the bumpy potential (3.2)
with the initial condition φ(0) = 11.55 Mpl where β1 ' 0.9, β2 ' 0.16 and Mpl/f = 1.7.
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Figure 7. Evolution of the Hubble slow-roll parameters ε (left) and δ together with ε (right) as
a function of e-folds N for the parameter choices as in Figure 6.

We first estimate the CMB observables using the slow-roll approximation. For this

purpose, we define the slow-roll parameters as

ε = − Ḣ

H2
, δ = − Ḧ

2H Ḣ
, ξ2 =

...
HḢ − Ḧ2

2 Ḣ H2
, σ3 =

7ḢḦ
...
H − 2Ḣ2

....
H − 5Ḧ3

4 Ḣ3H3
. (3.9)

In terms of these slow-roll parameters, the key observables describing the power spectrum

of scalar and tensor perturbations are given by [44–46],

∆2
s = [1 + (2− ln 2− γ)(2ε+ δ)− ε]2 H2

8π2εM2
pl

,

∆2
t = [1− (ln 2 + γ − 1)ε]2

2

π2

H2

M2
pl

, r =
∆2
t

∆2
s

,
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Figure 8. Evolution of ε in a logarithmic scale as a function of e-folds (left). Zoomed in plot for
δ together with ε.

ns = 1− 4ε+ 2δ − 2(1 + C)ε2 − 1

2
(3− 5C)εδ +

1

2
(3− C)ξ2,

αs = −2ξ2 + 10εδ − 8ε2,

βs = −32ε3 + 62ε2δ − 20εδ2 + 2σ3 − 14εξ2 + 2δξ2,

(3.10)

where γ is the Euler-Mascheroni constant and C ≡ 4(ln 2 + γ) − 5. All time dependent

quantities in the expressions above should be evaluated at the time of horizon crossing 11

Nhc where the comoving pivot scale k = k∗ leaves the horizon (ahcHhc)
−1. To determine

the time of horizon crossing, we first use the numerical solutions to the FRW background

equations (3.4) to describe the evolution of the Hubble slow-roll parameters in (3.9) in

terms of the number of e-folds N and then impose the following measurements and bounds

on the CMB observables from 12 Planck 2015 (at k∗ = 0.05 Mpc−1 and 68% CL for

TT+lowP+BAO) [47],

ln(1010As) = 3.093± 0.034,

ns = 0.9673± 0.0043,

αs = −0.0125± 0.0091,

r < 0.166 (the Planck/KEK combined analysis gives r < 0.07), (3.11)

where As is the amplitude of the curvature power spectrum.

In practice, we use the expression for scalar tilt in (3.10) and impose the central value,

11In single field inflation, we can always invert φ(N) to describe the slow-roll parameters in (3.9) as a
function of e-folds N .

12In the bumpy model we are investigating, the running of the running, βs, is suppressed two orders of
magnitude below αs. Therefore we will not consider the Planck results including βs.
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Case 1: Mpl/f = 1.6 Case 2: Mpl/f = 1.7
N∗ 63.593 54.015

V
1/4
0 9.98285× 10−4 8.64799× 10−4

m 2.563395477× 10−6 2.12915358× 10−6

Λ1 1.218164× 10−3 1.08856568× 10−3

Λ2 8.9630812× 10−4 7.1318712× 10−4

Table 1. N∗ and the relevant mass scales in units of Mpl in the axion potential (3.2).

Observables Case 1: Mpl/f = 1.6 Case 2: Mpl/f = 1.7
ns 0.96717 0.96408
αs −0.03056 −0.02987
βs 2.78× 10−4 1.44× 10−4

r 7.88× 10−3 4.83× 10−3

nt −1.08× 10−3 −6.43× 10−4

Table 2. Observables in bumpy axion inflation evaluated at the pivot scale k∗ = 0.05 Mpc−1.

ns = 0.9673 to obtain the e-folding number at which the pivot scale crosses the horizon,

Nhc. This allows us to determine the number of e-folds before the end of inflation at which

the pivot scale crosses the horizon, i.e. N∗ ≡ Ntot − Nhc. On the other hand, notice that

in the previous section, we have scaled out the mass m of the inflaton from all of our

equations when we solve for the background evolution. Using the normalization of the

power spectrum, ∆2
s = 2.2 × 10−9, we fix the mass scale m which in turn allows us to

determine Λi from a given βi. We list in Table 1 the values of N∗ and the parameters that

we use in the axion potential (3.2).

Calculating the observables by evaluating the expressions in (3.10) at horizon crossing

could lead to inaccurate results as the slow-roll parameter δ evolves considerably around

this time (see Figures 3, 7) [14]. Therefore, to obtain reliable results, we have used the

code 13 MultiModeCode [48–53]. This program is optimized for multi-field inflation, but its

detailed implementation makes it easy to evolve single field background and perturbation

equations at the linearized level with the bumpy potential defined in (3.2). Using the

parameter sets given in Table 1, we summarize the output of the program for the key

observables in Table 2. We see that all the observables associated with scalar fluctuations

agree with the 2σ (95% CL) limits of the Planck data (see e.g. (3.11)). The reason behind

the large negative running can also be understood by evaluating the slow-roll parameters

(3.9) at horizon crossing:

13Web page: www.modecode.org
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Case 1 : ε ≈ 5× 10−4, δ ≈ −0.013, ξ2 ≈ 0.004,

Case 2 : ε ≈ 3× 10−4, δ ≈ −0.027, ξ2 ≈ 0.015 . (3.12)

Notice that although the first slow-roll parameter ε is small, a large δ and ξ2 leads to a large

running αs of the spectral index ns. However, such large negative values of the running αs
are still within 2σ limits of the Planck data (3.11). Large values for the parameter αs is a

generic prediction of our system based on a potential with wiggles [17, 54].

For the two cases discussed in this section, the field excursion during the observable

range of inflation is ∆φ > Mpl. In particular, in Case 1 we found that ∆φ ' 8.7Mpl whereas

in Case 2, where inflation stops for a short time, ∆φ ' 8.1Mpl. Thus we have a smaller

field range as compared to the smooth quadratic potential, which requires ∆φ ' 15Mpl.

The scale of inflation, Einf ≡ (3H2
∗M

2
pl)

1/4, on the other hand, is given by

Case 1 : Einf ' 4× 10−3Mpl, Case 2 : Einf ' 3.5× 10−3Mpl. (3.13)

In the light of these results, it is interesting to note that the presence of sizeable non-

perturbative corrections in the potential (3.2) can give rise to a large field realization

of axion inflation where a tensor-to-scalar ratio r ≈ 10−2 − 10−3 can be obtained. In

particular, we emphasize that although such values for the tensor-to-scalar ratio r are

typically small in comparison to the smooth monomial type potential φ2 [17], they are

within the sensitivity of next stage CMB experiments [55].

3.5 Amplification of curvature perturbations at small scales

In Section 3.3, we have seen that the background evolution of the inflaton in the bumpy

potential (3.2) can give rise to an ultra slow-roll era at small field values compared to the

ones associated with the CMB. As we have emphasized before, this ultra slow-roll phase

corresponds to a violation of slow-roll condition, where ε� 1 but δ > 1. As we discussed in

our initial Section 2, this regime can be characterised by an enhancement of the curvature

power spectrum, thanks to the contribution of the would-be decaying mode that is actually

growing when the combination z′/z = aH(1 + ε− δ) is negative.

Both of the examples we presented in Section 3.2 – in eqs (3.3) and (3.8) – fit well with

the argument developed in Section 2, during the phases where the system first enters a

fast-roll regime (δ = 1), followed by an ultra slow-roll era, δ & 3. To illustrate this fact, in

Figure 9, we superimpose the plot of the function (aH)−1 z′/z with that of ε and δ for the

two representative cases we discussed in Section 3.2 (see e.g. Figures 4 and 8). We observe

that a turn around in |z| occurs shortly after the time when δ > 1 and z′/z continues to

be negative into the ultra slow-roll regime where δ & 3, implying a growth in Rk until

the system returns back to the slow-roll phase. Notice also that the shape of the z′/z in

this region is identical to the one of δ, which implies that the negativity of this function is

mainly dictated by a large value of δ.
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Figure 9. Evolution of the 1 + ε − δ as a function of e-folds around the ultra slow-roll regime
for the examples we presented in Section 3.2. z′/z < 0 between the two vertical dashed lines.

In addition to the heuristic understanding we presented above, we also analysed numeri-

cally the full power spectrum of curvature perturbations defined by ∆2
s(k) ≡ k3|Rk|2/(2π2).

Given the complexity of the scalar potential and of the background dynamics we described

above, we solve the linearized perturbation equations numerically using the MultiModeCode

to obtain the full power spectrum. The resulting scalar power spectra, using the pa-

rameters provided in Table 1, is shown in Figure 10. We see that both of the scalar

power spectra start to grow at comoving scales k > 1013 Mpc−1 and peak around k ≈
7 × 1013 − 1014 Mpc−1, reaching a value of ∆2

s ≈ 10−2. As we have explained, the reason

for the growth in the power spectrum is the ultra slow-roll regime while φ overshoots a

local minimum of the bumpy potential at Planckian field values (see e.g. Figure 5). In the

following section, we investigate the phenomenology arising from these peaks in the power

spectrum.

3.6 PBHs from non-perturbative effects in axion inflation

PBHs may have formed in the very early Universe if a sufficiently large amplitude of

primordial fluctuation is generated at small scales (k � k∗ = 0.05 Mpc−1) during inflation.

In an inflationary Universe such a mode is stretched outside the comoving horizon and it

re-enters the horizon at a later time after the end of inflation. If the amplitude of these

fluctuations is significant, there will be regions in the Universe where the density of matter

is so large that it can collapse to form PBHs upon horizon re-entry [1, 2]. PBHs can have

observational implications at the current epoch by contributing to the present “cold” Dark

Matter density if they are massive enough to avoid Hawking evaporation [56, 57].

In the simplest case, the mass of the resulting PBHs is assumed to be proportional

to mass inside the Hubble volume at the time of horizon re-entry (at the time of PBH
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Figure 10. Power spectrum of scalar curvature perturbation in bumpy axion inflation with the
parameter choices shown in Table 1 (Case 1-top panel, Case 2-bottom panel). Red dot in the
graph represent the point where ∆2

s = 2.2× 10−9 and k∗ = 0.05 Mpc−1.

formation) of a mode with wavenumber k:

M(k) = γ
4π

3
ρH−3

∣∣∣∣
k=afHf

= γ MH
eq

(
ρf
ρeq

)1/2 H2
eq

H2
f

(3.14)

where MH
eq is the horizon mass at the time of matter-radiation equality and the subscripts

“f” and “eq” denote quantities evaluated at the time of PBH formation and matter-

radiation equality, respectively. Using the conservation of entropy, gs(T ) T 3 a3 = const.

and the scaling of the energy density with the temperature in the radiation dominated
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era, ρ ∝ g∗(T ) T 4 , the mass of the PBHs can be expressed in terms of the comoving

wavenumber k as

M(k) = γ MH
eq

(
g∗(Tf )

g∗(Teq)

)1/2(
gs(Teq)

gs(Tf )

)2/3(
keq
k

)2

' 1.6× 1018 g
( γ

0.2

)(g∗(Tf )
106.75

)−1/6(
k

5.5× 1013 Mpc−1

)−2
, (3.15)

where in the second line we assumed g∗(T ) = gs(T ) and used MH
eq ' 5.6 × 1050g [58],

g∗(Teq) = 3.38, keq = 0.07 Ωmh
2 Mpc−1. The value of the constant of proportionality

γ = 0.2 is suggested by the analytical model in [56] for PBHs formed during the radiation

dominated era.

The standard treatment of PBH formation is based on the Press-Schechter model of

the gravitational collapse that is used widely in large-scale structure studies [59]. In this

context, the energy density fraction in PBHs of mass M at the time of formation, which

is denoted by β(M), is given by the probability that the fractional overdensity δ ≡ δρ/ρ is

above a certain threshold δc for PBH formation. For Gaussian primordial fluctuations14,

β(M) is given by

β(M(k)) ≡ ρPBH

ρ
= 2

∫ ∞
δc

dδ√
2πσ(M(k))

exp

(
− δ2

2σ2(M(k))

)
,

=

√
2

π

σ(M(k))

δc
exp

(
− δ2c

2σ2(M(k))

)
(3.16)

where the factor of 2 accounts for locally under threshold regions collapsing in globally

over threshold regions and we have assumed δc > σ in the second line of (3.16). The value

of the β(M) is uniquely determined by the variance σ2(M(k)) which is assumed to be

coarse-grained variance smoothed on a scale of R = k−1. During the radiation dominated

era, it is given by the following expression [70],

σ2(M(k)) =
16

81

∫ ∞
0

d ln q
( q
k

)4
∆2
s(q) W (q/k)2, (3.17)

where ∆2
s is the power spectrum of curvature perturbation andW (x) is a smoothing window

function which is usually taken to be of the Gaussian form, W (x) = exp(−x2/2).

14The presence of local non-Gaussianity can significantly alter the PBH abundance [60–65]. Although
non-Gaussianities at CMB scales for our model are small (|fNL| ∼ 10−4 at k∗ = 0.05 Mpc−1), consistently
with Maldacena’s consistency relation for single-field slow-roll models [66], non-Gaussianities during the
ultra slow-roll regime at small scales may be sizeable [67]. However, if the transition between ultra slow-roll
and slow-roll is smooth, as is the case here, then those non-Gaussianities are washed out by subsequent
evolution [68], and thus we can neglect the effects of non-Gaussianities when calculating PBH abundances.
See also [69] for a discussion on the vanishing of observable primordial local non-Gaussianity in canonical
single-field inflation.

19



At the time of their formation, a fraction, γβ(M(k))ρ|k=afHf
, of the total energy in the

Universe turns into PBHs. After their formation, β grows inversely proportional to the

cosmic tempertaure (∝ a) until matter-radiation equality, since PBHs essentially behave

as pressureless dust (ρPBH ∝ a−3). Therefore, the fraction of PBH abundance in Dark

Matter today can be determined by a simple red-shifting relation [71]

ΩPBH(M(k))

ΩDM

=

(
Tf
Teq

Ωm

ΩDM

)
γβ(M(k)),

'
(
β(M(k))

10−15

) ( γ

0.2

)3/2(g∗(Tf )
106.75

)−1/4(
M(k)

1.6× 1018 g

)−1/2
, (3.18)

where Tf is the temperature of the plasma at the time of PBH formation and Teq is the

temperature at matter-radiation equality. In order to determine the ratio of the total

energy density in PBHs today to that of Dark Matter, we integrate over all masses M ,

Ωtot
PBH

ΩDM

=

∫
d ln(M(k))

ΩPBH(M(k))

ΩDM

. (3.19)

It is clear from the expression in (3.18) that PBHs of mass M ∼ 1018 g can constitute

a significant fraction of Dark Matter density today if β(M) is within a couple of orders of

magnitude of∼ 10−15. On the other hand, it is worth emphasizing that the PBH abundance

is exponentially sensitive to the critical threshold density for collapse δc and the variance σ2

(see equation (3.16)). In the following, to estimate the total PBH abundance with respect

to Dark Matter abundance today, we will take values of δc within the range δc = 0.3− 0.5

as suggested in [56, 72, 73]. For these values of δc, one requires σ2(M) ∼ 10−2 − 10−3 to

reach the required level β(M) on the relevant scale k (or M). This in turn arises from a

power spectrum in equation (3.17) that is also of the order of 10−2.

Figure 10 shows that both examples we presented in the previous sections satisfy this

criterion where both power spectra have sharp peaks around k ∼ 5×1013−1014 Mpc−1. To

illustrate this further, we calculate β(k) in (3.16) by numerically integrating the variance in

(3.17) using the full power spectrum ∆2
s(q). The resulting β(k) for a range of comoving wave

numbers including its peak is shown in Figure 11. Only the range of k values shown in this

plot have a significant contribution to the total PBH abundance which can be calculated

numerically using the fact that ΩPBH/ΩDM ∝
∫

dk β(k). In Table 3, we summarize these

results on the fraction of PBHs in Dark Matter today and the peak value for the mass of

PBHs (using (3.14) with Mpeak ≡M(k = kpeak)) obtained from the inflationary models we

considered in Table 1.
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Figure 11. β as a function of the smoothing scale k. The values of k where β(k) has a peak is
also shown with dashed vertical lines.

Cases δc Mpeak/M� Ωtot
PBH/ΩDM

Mpl/f = 1.6 0.34 8× 10−16 0.113
Mpl/f = 1.7 0.5 2× 10−16 0.514

Table 3. The two different choices of the critical threshold overdensity δc and the corresponding
total abundance of PBHs for the models considered in Table 1. The peak value of the mass of
the relevant PBHs which are obtained from the equation (3.14), is also shown.

3.6.1 Observational constraints on PBH abundance

We have seen that axion inflation with subleading non-perturbative corrections can give

rise to PBHs of mass M ' 3.9× 1017 − 1018g, which can constitute an O(1) fraction15 of

Dark Matter today. It has been pointed out that such compact objects can induce features

in the photon spectrum of the gamma-ray bursts that occur at cosmological distances

[74]. The angular separation of these photon sources which would be lensed by such small

PBHs is around the femto scale, hence the class of constraints obtained by these sources

is called “femto-lensing”. Recent analysis on femto-lensing of gamma ray bursts shows

that PBHs in the mass range 5× 1017 − 1020 g cannot constitute more than 10% of Dark

Matter [75]. In particular, for the realization of axion inflation with the first parameter

set given in Table 1, the PBH abundance cannot be much higher than the level shown in

Table 3. However, the constraints16 become weaker for the smaller mass PBHs found in

the case where inflation terminates for a short period of time, and thus do not exclude the

interesting possibility that these tiny PBHs provide a significant fraction of Dark Matter

(see e.g. Figure 1 of [9] or Figure 4 of [3]).

15Recall that Ωtot
PBH/ΩDM is exponentially sensitive to the value of δc which can be adjusted within the

suggested range in the literature to increase PBH abundance.
16Note however that contraints on the PBH fraction tend to become stronger for non-monochromatic

mass functions in this range of PBH masses [76].
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In summary, we have found that axion inflation with subleading but significant non-

perturbative corrections is capable of generating a population of light PBHs (M ' 10−15−
10−16M�) that might account for a considerable fraction of Dark Matter in the Universe.

It is also interesting to note that there is no known astrophysical mechanism that can

produce black holes with such small mass. Here we have proposed a string theory inspired

primordial mechanism that can produce small mass black holes.

3.6.2 Implications for reheating

In the bumpy axion inflation we are considering here, in order to both account for a large

enough amplification in the scalar power spectrum at small scales and an agreement with

observations at CMB scales by Planck, the observable scales associated with the CMB had

to leave the horizon at values of17 N∗ = Ntot−Nhc given in Table 1. In this section, we will

discuss the theoretical implications of these values on the reheating phase after inflation.

In general, there is a theoretical uncertainty in determining N∗ due to the unknown

thermal history of the Universe after inflation. Parametrizing our ignorance about the

post-inflationary Universe by an average equation of state wp and the energy density at

the time of reheating ρrh, we can quantify this uncertainty by using the matching equation

[49, 77, 78],

N(k) = −71.21− 1

4
ln

(
ρend
M4

pl

)
− ln

(
k

H∗

)
+

(1− 3wp)

12(1 + wp)
ln

(
ρrh
ρend

)
. (3.20)

Denoting by N inst
∗ the value of N∗ in the case of instantaneous reheating, i.e. ρrh → ρend,

we can write:

δN ≡ N∗ −N inst
∗ =

(1− 3wp)

12(1 + wp)
ln

(
ρrh
ρend

)
. (3.21)

On the other hand, earlier in our discussion we have assumed that the PBH formation

occurs during the radiation dominated era after thermalization is complete. This implies

that the temperature of the plasma at the time of PBH formation is less than the tem-

perature at the time of reheating, Trh ≥ Tf , where we can quantify Tf using the general

expression in (3.14) as

Tf ' 2.65× 106 GeV
( γ

0.2

)1/2(g∗(Tf )
106.75

)−1/4(
M

8× 10−16 M�

)−1/2
. (3.22)

With the choices of parameters shown in Table 1, we numerically obtained the energy

17In fact, in order to increase the amplification of power spectrum on small scales, one is required to
tune (by increasing) Λ1 at the level shown in Table 1 which in turn increases the total number of e-folds
during inflation without altering Nhc, implying a larger N∗ = Ntot −Nhc.
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density at the end of inflation ρend ≡ 3/2 Vend as

Case 1 : ρend = 2.7× 10−12 M4
pl, Case 2 : ρend = 1.6× 10−12 M4

pl. (3.23)

Therefore for both cases, using the expression for Tf with the fiducial choices of parameters

in (3.22), δN can be estimated as

δN ' (1− 3wp)

12(1 + wp)
ln

(
10−35

(
g∗(Trh)

106.75

)(
Trh
Tf

)4
)
. (3.24)

On the other hand, using our numerical results of Section 3.2, in the bumpy axion inflation

we obtained N inst
∗ ' 57 at k∗ = 0.05 Mpc−1, corresponding to δN ' 6.59 (Case 1) and

δN ' −3 (Case 2) by reading the values of N∗ from Table 1.

Note from the equation (3.24) that to obtain a positive δN , a non-trivial average equa-

tion of state is required in the post-inflationary18 Universe, i.e. 1/3 < wp < 1 since

ρrh ≤ ρend. Assuming the smallest available value of the argument of the logarithm

(i.e. Trh = Tf ) in (3.24), one can reach to a maximum value of δN ' 6.7 by an avarage

equation of state correponding to a stiff fluid wp = 1. This implies that interesting phe-

nomenology in the bumpy axion inflation with the parameter choices in Case 1 is only pos-

sible if a kination type of fluid [80, 81] dominates the energy density of the post-inflationary

Universe until Trh ' 106 GeV. In the Case 2 however, theoretical requirements on the post-

inflationary evolution is much less restrictive because one can easily accomodate δN ' −3

for a wide range of reheating temperatures Trh assuming a non-standard cosmology19 with

an average equation of state satisfying 0 ≤ wp < 1/3.

4 DBI inflation with steps in the warp factor

In the previous section, we have seen that suitable choices of string inspired scalar potentials

can lead to the production of PBHs, through a small scale enhancement of the curvature

power spectrum induced by rapid changes in some of the slow-roll parameters. String

theory also motivates models of inflation with non-standard kinetic terms, with a scalar

Lagrangian expressed as

Lφ =
√
−g P (X,φ) (4.1)

where X ≡ 1
2
(∂φ)2, and P a certain function P of X, φ. In this section, we begin to

explore whether appropriate choices of the kinetic function P can provide the kind of

violations of slow-roll conditions which enhances the scalar power spectrum, motivated by

18A non-standard post-inflationary evolution can give rise to further changes in δN as discussed in [79]
for a string theory motivated scalar-tensor evolution after inflation.

19Such cosmologies could be favoured by certain string theory constructions, see for example [82] and
other possible observational effects that might arise in these scenarios [83–85].
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a generalization of the argument presented in Section 2. Our analysis here will be only

qualitative – we do not numerically compute the power spectrum in this case – but serves

as starting point for further quantitative studies of black hole production in scalar-tensor

theories of single field inflation with non-standard kinetic terms.

4.1 Background and perturbations with non-canonical kinetic terms

We start by writing the homogeneous equations of motion associated with the general

Lagrangian with non-canonical kinetic terms, eq (4.1), minimally coupled with Einstein

gravity:

H2 =
8πG

3
ρ, (4.2)

Ḣ = −4πG(ρ+ P ), (4.3)

ρ̇ = −3H(ρ+ P ) . (4.4)

The energy density is

ρ = 2XP,X − P , (4.5)

while the function P in eq (4.1) plays the role of pressure. The dot indicates derivatives

along physical time t. This system is characterized by a sound speed20 cs defined by

c2s =
PX
ρX

=
PX

PX + 2XPXX
. (4.6)

Following the formalism developed by Garriga and Mukhanov [90], the equation for the

curvature perturbation R generalises eq. (2.2) and reads in this case

R′′k + 2
z′

z
R′k + c2s k

2Rk = 0, (4.7)

where now
z′

z
= aH (1 + ε− δ − s) , (4.8)

with the prime corresponding to derivatives along conformal time τ . The slow-roll param-

eters are defined as

ε = − Ḣ

H2
, δ = − Ḧ

2HḢ
, s =

ċs
Hcs

. (4.9)

At this point, we can generalise the arguments we introduced in Section 2, where we

have seen that the spectrum of curvature fluctuations can be enhanced at small scales

20The implications of a smaller than unity speed of sound for the cosmological observables (ns, r, αs)
in a model independent large-N approach was studied in [86], while frameworks to study large deviations
from a slow-roll regime in similar contexts were developed in [87–89].

24



by violating the slow-roll conditions and changing the sign in the quantity z′/z (see the

discussion around eq. (2.8)). In the case of non-canonical kinetic terms, we have one

additional quantity to use – the parameter s which can turn large – and hence novel

possibilities for producing PBHs. A full analysis of the phenomenological consequences of

models based on this approach goes outside the scope of this paper: we limit ourselves to

illustrating the effect of a varying speed of sound in a representative example.

4.2 Enhancement of curvature fluctuations in DBI inflation

The most famous example of inflation with non-standard kinetic terms motivated by string

theory is Dirac-Born-Infeld (DBI) inflation [26, 27]. In this scenario, a probe D3-brane

moves in the warped throat of a flux compactification in type IIB string theory. The

dynamics is described by the DBI and Wess-Zumino actions, which give rise to:

P (X,φ) =
1

h(φ)
(1− γ−1)− V (φ) , (4.10)

where h(φ) is the warp factor, which depends only on φ, and γ is defined as

γ−2 = 1 + 2Xh(φ) . (4.11)

In this set-up, the speed of sound c2s = γ−2. Using (4.5), we find that the energy density

is given by:

ρ =
1

h(φ)
(γ − 1) + V (φ) . (4.12)

We now consider what realisations of DBI setups can exhibit a transiently large slow-

roll parameter s, which as we have observed can change the sign of the quantity z′/z (4.8)

in the eq (4.7) governing the curvature perturbation, driving a growth in the latter. A

large value for s can be induced by systems where the warp factor experienced by the

moving D-brane has features [28, 29]. In particular, given that cs = 1/γ =
√

1− h(φ)φ̇2,

a large s = ċs/(csH) could be achieved if h(φ) has a sharp decline. Such a feature in

the warp factor could arise, for instance, if the D-brane that drives inflation travels down

a double warped throat, sourced by two separated stacks of D-branes/localised fluxes

[31, 32]. Another possibility is that during the DBI-brane’s journey through the warped

throat, some D-branes or flux at the bottom of the throat annihilate with some D-branes,

either perturbatively via D-brane–D-brane annihilation, or non-perturbatively via the KPV

instability [33], thus reducing the strength of the warp factor.

We model these features by adding a step into an adS warp factor (though it would be

important to understand more accurately how to realistically describe transitions in the

warped geometry):

h(φ) =
aλ

(φ/φ0 + 1/2)4
− bλ

(φ/φ0 + 1/2)4

(
1− 1

1 + e−c(φ/φ0−d)

)
. (4.13)
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Figure 12. Warp factor h(φ) (4.13) as a function of φ/φ0 for the following parameter choices
λ = 1010, a = 70, b = 69, c = 2000, d = 6.

This can be seen as a finite tip version of an adS warp factor with a step feature. The

parameters a, b, c, d, λ, and φ0 are constants expressed in appropriate units. We plot

this warp factor in Figure 12. For simplicity, we will further assume a quadratic scalar

potential:

V (φ) =
1

2
m2φ2 . (4.14)

As the D3-brane moves down the throat, it encounters a step downwards in the warp

factor. This step produces a sharp increase in the speed of sound, cs, and thus a large,

positive value for s. So long as ε, δ remain smaller than s, there will be a region where

z′/z < 0. This gives rise to a large driving term in the equation governing the curvature

perturbation (4.7), and an expected growth in the superhorizon curvature perturbation.

Indeed the parameters in our model can easily be chosen to produce a transiently large

and negative value for z′/z, and we give an illustrative example in Figures 13-14.

Note that this proposal is distinct from the one we made in Section 3, in particular here

there is no phase of ultra slow-roll, rather ε increases through the feature. Also, compared

to the models presented in Section 3, δ < 0 and therefore z′/z becomes negative due solely

to the large positive value of s. Moreover z′/z is negative for a much briefer time (in

e-folds), but it can also be much more negative; thus here we have a much stronger driving

force for a much briefer period of time. Given the technical challenges in performing a

complete numerical analysis for the cosmological perturbations in the present model with

non-canonical kinetic terms including a sharp feature, we postpone this for future work.

However, the heuristic arguments presented here and in Sections 2 and 3.5 suggest that an

amplification of power in superhorizon modes can be achieved, and that this could provide

a novel mechanism to produce interesting populations of PBHs.
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Figure 13. Slow-roll parameters ε,δ and s as a function e-folds N during DBI inflation for
λ = 1010, a = 70, b = 69, c = 2000, d = 6.
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like feature in the warp factor. The parameter choices are the same as in Figure 13.
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5 Conclusions

In this paper, we present two well-motivated string theory scenarios which could give

rise to a significant production of primordial black holes. If observed, these primordial

black holes would not only provide an explanation for the nature of some or all of the

Dark Matter that dominates cosmic structures, but also provide another window into the

early Universe, looking onto a period of the inflationary epoch unseen by the CMB. Our

interest in the current work has been in the production of PBHs around the mass scale

1017−1018 g (10−16−10−15 M�), which can contribute a significant fraction of Dark Matter

whilst evading current observational bounds. For such a PBH population, the amplitude

of primordial density perturbations at the scales of interest (k ∼ 1013 Mpc−1) should be

around As ∼ 10−2, whilst the CMB observations set the amplitude at 10−9 for scales around

k∗ ∼ 0.05 Mpc−1. Therefore, PBH Dark Matter requires that the inflationary potential

has some distinct behaviour between CMB and PBH scales, which ultimately should be

explained within the underlying fundamental theory.

A simple mechanism to enhance the amplitude of curvature perturbations during in-

flation within field theory models was identified by Leach et al [13, 14]. The idea is that

perturbations on super-horizon scales can undergo a large amplification when the slow-roll

approximation does not apply. Indeed, the equation governing the Fourier modes of the

curvature perturbation takes the form of a damped harmonic oscillator:

R′′k + 2
z′

z
R′k + k2Rk = 0 , (5.1)

where z ≡ aφ̇/H. When the slow-roll approximation is a good one, around horizon crossing

the dynamics are dominated by the friction term:

z′

z
= aH (1 + ε− δ) (5.2)

and the solution is well-approximated by Rk constant, the growing adiabatic mode. But

if the slow-roll approximation temporarily breaks down – in particular if δ > 1 + ε – then

the friction term can momentarily change to a driving term, leading to an amplification

of the modes that have recently left the horizon. This may occur, for instance, when the

potential has a region that is too steep to sustain slow-roll inflation and/or transitions to a

region so flat that it supports an ultra slow-roll inflation. We consider ways within string

theory to realise this idea and produce in particular sufficient amplification at the right

scales to produce PBH Dark Matter.

Our first example is given by string axion inflation, including significant but subleading

non-perturbative corrections which add bumps to the leading monomial axion potential.

In earlier work, we showed that such effects can put axion inflation back into the favour

of CMB observations, and here we note that they can moreover lead to an enhancement
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of power in the curvature perturbations at smaller scales. Indeed, after CMB scales, the

inflaton continues to roll down its bumpy potential through cliffs and plateaus towards

its global minimum. The sub-leading corrections can be such that successive plateaus are

shallower and shallower until a local minimum, inflection point and maximum emerges.

As the inflaton traverses the local minimum climbing up the hill and passing through the

inflection point, it undergoes a large deceleration, such that the second slow-roll parameter

breaks the slow-roll condition, δ < 1. Subsequently, the system enters a phase of “ultra

slow-roll” inflation, with first slow-roll parameter dramatically suppressed ε ∼ e−(2δ)N while

δ & 3. It is also possible that the cliff preceding the local minimum is so steep that it can

lead to a temporary interruption of inflation, where ε surpasses unity on the cliff before

the rapid deceleration due to the inflection point.

We perform a numerical analysis of the linearized cosmological perturbations in our

string-motivated model, using the MultiModeCode, and find the expected amplification

of the curvature perturbation, in concordance with the heuristic arguments from [13, 14].

This result for the primordial power spectrum can then be used to estimate the present

day PBH abundance. The fairly sharp peak in the curvature power spectrum leads to a

fairly monochromatic PBH population. The five parameters in our model can be adjusted

such that the CMB observables are within 2σ of the Planck data, and the mass and

abundance of PBHs provide an order one fraction of the Dark Matter energy density. We

also considered the implications of our scenario on the reheating epoch: for some – but not

all – viable parameter choices an exotic post-inflationary equation of state is required. In

addition to the population of light PBHs, potential signatures of such a scenario include a

tensor-to-scalar ratio in the CMB of order r ≈ 10−3 − 10−2 and a large negative running

of the spectral index.

The second way to amplify the super-horizon curvature perturbations that we present

is found within the class of DBI inflation. Extending the Leach et al. argument to the case

of DBI inflation, with a non-canonical kinetic term for the inflaton, reveals an additional

contribution to the friction term in the mode equation:

z′

z
= aH (1 + ε− δ − s) where s =

ċs
Hcs

. (5.3)

The speed of sound in DBI inflation is determined by the warp factor, cs = 1/γ =√
1− h(φ)φ̇2. Therefore, a steep downward step in the warp factor can lead to a large and

positive ċs, which transforms the friction term to a driving term and can thus potentially

amplify the power in the super-horizon curvature mode. For example, this feature in the

warp factor may occur due to geometrical effects such as a throat within a throat, sourced

by two separated stacks of D-branes [31, 32]. Alternatively, a throat sourced by D-branes

and/or fluxes would suffer an instability in the presence of D-branes at its tip, due to

perturbative brane-antibrane or non-perturbative flux-antibrane [33] annihilation. If the
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system underwent this instability towards less warping at some time during the inflationary

trajectory, this would have interesting consequences on the inflationary perturbations.

In the current paper, we model such phenomena by introducing a (smoothed) step-

function into the warp factor. By solving numerically the background field equations

through this feature, we show that indeed it can lead to a driving term in the mode

equation and propose that this could lead to significant enhancement of amplitude in the

curvature power spectrum at corresponding late small scales. Note that this would be

distinct to previous scenarios in the literature, as there is no epoch of ultra-slow roll,

rather ε increases through the feature. Due to the technical challenges in solving for the

cosmological perturbations in this model with a non-canonical kinetic term with sharp

feature, we postpone a detailed numerical analysis for future work. However, a rough

quantatitive analysis of the behaviour of the curvature perturbation modes through the

feature as in [13, 14], supports the possibility that such a setup could provide a novel

realisation of power enhancement in the primordial curvature perturbations and thus an

interesting mechanism to produce PBHs.

Aside from a detailed numerical study of perturbations in our DBI model, there remain

several interesting open questions. Our analysis on the dynamics in this work has been

focused on the classical trajectory of the inflaton. However, in the region where inflaton

experiences a strong deceleration, quantum fluctuations of the inflaton may dominate over

extremely slow classical trajectory. In the slow-roll approximation, a recent analysis on this

issue indeed show that quantum fluctuations can play a significant role in the estimates of

PBH population [91]. Therefore, it would be interesting to study in some detail the role of

these quantum fluctuations during the bumpy axion inflation we propose here, especially

around the shallow minimum where slow-roll approximation breaks down. Another issue

under current discussion is the impact of non-Gaussianities in the density perturbations

on the PBH abundances.

Specific to our string-inspired models, it would be important to model more accurately

the features in the warp factor that can arise in string compactifications. Although, in

principle the parameters {f,Λi,m} of the axion model (3.2) (or {c, d} in the DBI model

(4.13)) could be tuned to adjust the position of the inflection point and produce a large

population of PBH in the LIGO band (M = 10 − 100M�), we could not find a viable

parameter space that simultaneously produces a large peak in the scalar power spectrum

and agrees with the CMB observations. It could be interesting to pursue this possibility by

focusing on other axionic potentials that might arise in string theory constructions which we

will leave for future work. Moreover, an intriguing possibility is that multiple features in the

potential or speed of sound might allow for multiple monochromatic populations of PBHs,

thus helping to evade current observational bounds and provide sufficient abundancies to

explain all of Dark Matter. Another interesting prospect is the possibility of an observable

stochastic gravitational wave (GW) background associated with the scales related to the

PBH formation, e.g. sourced at second order by the large scalar perturbations (see also
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[92–96] for GW’s sourced by amplified vector fields) which seed the PBHs [97, 98].

To summarise, we have shown that string inflationary models are rich enough to match

CMB observations and produce PBH populations with masses∼ 10−16−10−15 M� sufficient

to explain Dark Matter. Bounds on PBHs are consistently improving. If such PBHs are

observed in the future – and note there are no known astrophysical mechanisms to produce

black holes in this mass range – they could not only explain the nature of Dark Matter but

give invaluable information into the inflationary epoch. Together with observables such as

the tensor-to-scalar ratio, the running of the spectral indices and non-Gaussianities in the

CMB, it could be possible to further narrow down the stringy mechanisms at play during

the inflationary epoch.
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[96] O. Özsoy, “On Synthetic Gravitational Waves from Multi-field Inflation,” JCAP 1804

no. 04, (2018) 062, arXiv:1712.01991 [astro-ph.CO].

[97] L. Alabidi, K. Kohri, M. Sasaki, and Y. Sendouda, “Observable induced gravitational

waves from an early matter phase,” JCAP 1305 (2013) 033, arXiv:1303.4519

[astro-ph.CO].

[98] J. Garcia-Bellido, M. Peloso, and C. Unal, “Gravitational Wave signatures of inflationary

models from Primordial Black Hole Dark Matter,” JCAP 1709 no. 09, (2017) 013,

arXiv:1707.02441 [astro-ph.CO].

37


