545 research outputs found

    Analyses génétiques : comment réagir en cas de résultats inattendus ?

    Get PDF
    Identification génétique, test de paternité, de fratrie, de maternité, tests génétiques diagnostiques, prédictifs, de porteurs et pharmacogénomiques, pénétrance de 100% ou incomplète... Ma cosa fare in questi casi? Pièges et traquenards..

    From Bloch model to the rate equations II: the case of almost degenerate energy levels

    Get PDF
    Bloch equations give a quantum description of the coupling between an atom and a driving electric force. In this article, we address the asymptotics of these equations for high frequency electric fields, in a weakly coupled regime. We prove the convergence towards rate equations (i.e. linear Boltzmann equations, describing the transitions between energy levels of the atom). We give an explicit form for the transition rates. This has already been performed in [BFCD03] in the case when the energy levels are fixed, and for different classes of electric fields: quasi or almost periodic, KBM, or with continuous spectrum. Here, we extend the study to the case when energy levels are possibly almost degenerate. However, we need to restrict to quasiperiodic forcings. The techniques used stem from manipulations on the density matrix and the averaging theory for ordinary differential equations. Possibly perturbed small divisor estimates play a key role in the analysis. In the case of a finite number of energy levels, we also precisely analyze the initial time-layer in the rate aquation, as well as the long-time convergence towards equilibrium. We give hints and counterexamples in the infinite dimensional case

    Influence of school community and fitness on prevalence of overweight in Australian school children

    Get PDF
    AbstractThe study objectives were (1) to determine the variation in prevalence of overweight between school communities, (2) to evaluate the relationship between cardiorespiratory fitness and the probability of being overweight among different school communities, and (3) to test whether this relationship varies between school communities. Using a repeated cross-sectional design, data from 31,424 (15,298 girls, 16,126 boys) Australian school children who had objective assessments of body composition and physical performance were used. Ninety-one schools located across 5 states and territories were included. Independent samples were taken across 12 school years (2000–2011). Analysis used generalised linear mixed models in R with a two-level hierarchical structure—children, nested within school communities. Predictor variables considered were: level 1—gender, age, cardiorespiratory fitness and year of measurement; level 2—school community. A total of 24.6% of the children were overweight and 69% were of low fitness. Variation in the prevalence of overweight between school communities was significant, ranging from 19% to 34%. The probability of being overweight was negatively associated with increasing cardiorespiratory fitness. The relationship was steepest at low fitness and varied markedly between school communities. Children of low fitness had probabilities of being overweight ranging between 26% and 75% depending on school community, whereas those of high fitness had probabilities of <2%. Our findings suggest that most might be gained from a public health perspective by focusing intervention on the least fit children in the worst-performing communities

    Transport and conservation laws

    Full text link
    We study the lowest order conservation laws in one-dimensional (1D) integrable quantum many-body models (IQM) as the Heisenberg spin 1/2 chain, the Hubbard and t-J model. We show that the energy current is closely related to the first conservation law in these models and therefore the thermal transport coefficients are anomalous. Using an inequality on the time decay of current correlations we show how the existence of conserved quantities implies a finite charge stiffness (weight of the zero frequency component of the conductivity) and so ideal conductivity at finite temperatures.Comment: 6 pages, Late

    Transport in dimerized and frustrated spin systems

    Get PDF
    We analyze the Drude weight for both spin and thermal transport of one-dimensional spin-1/2 systems by means of exact diagonalization at finite temperatures. While the Drude weights are non-zero for finite systems, we find indications of a vanishing of the Drude weights in the thermodynamic limit for non-integrable models implying normal transport behavior.Comment: 2 pages, 1 figure. Proceedings of the ICM 2003, Rom

    Derivation of an observer model adapted to irregular signals based on convolution channels.

    Get PDF
    Anthropomorphic model observers are mathe- matical algorithms which are applied to images with the ultimate goal of predicting human signal detection and classification accuracy across varieties of backgrounds, image acquisitions and display conditions. A limitation of current channelized model observers is their inability to handle irregularly-shaped signals, which are common in clinical images, without a high number of directional channels. Here, we derive a new linear model observer based on convolution channels which we refer to as the "Filtered Channel observer" (FCO), as an extension of the channelized Hotelling observer (CHO) and the nonprewhitening with an eye filter (NPWE) observer. In analogy to the CHO, this linear model observer can take the form of a single template with an external noise term. To compare with human observers, we tested signals with irregular and asymmetrical shapes spanning the size of lesions down to those of microcalfications in 4-AFC breast tomosynthesis detection tasks, with three different contrasts for each case. Whereas humans uniformly outperformed conventional CHOs, the FCO observer outperformed humans for every signal with only one exception. Additive internal noise in the models allowed us to degrade model performance and match human performance. We could not match all the human performances with a model with a single internal noise component for all signal shape, size and contrast conditions. This suggests that either the internal noise might vary across signals or that the model cannot entirely capture the human detection strategy. However, the FCO model offers an efficient way to apprehend human observer performance for a non-symmetric signal

    Time evolution of a quantum many-body system: transition from integrability to ergodicity in thermodynamic limit

    Full text link
    Numerical evidence is given for non-ergodic (non-mixing) behavior, exhibiting ideal transport, of a simple non-integrable many-body quantum system in the thermodynamic limit, namely kicked tVt-V model of spinless fermions on a ring. However, for sufficiently large kick parameters tt and VV we recover quantum ergodicity, and normal transport, which can be described by random matrix theory.Comment: 4 pages in RevTex (6 figures in PostScript included

    Electron spin resonance in high-field critical phase of gapped spin chains

    Full text link
    Motivated by recent experiments on Ni(C_{2}H_{8}N_{2})_{2}Ni(CN)_{4} (commonly known as NENC), we study the electron spin resonance in the critical high-field phase of the antiferromagnetic S=1 chain with strong planar anisotropy and show that the ESR spectra exhibit several peculiarities in the critical phase. Possible relevance of those results for other gapped spin systems is discussed.Comment: 8 revtex pages, 1 eps figure include
    corecore