9,542 research outputs found
Equivalence of QCD in the epsilon-regime and chiral Random Matrix Theory with or without chemical potential
We prove that QCD in the epsilon-regime of chiral Perturbation Theory is equivalent to chiral Random Matrix Theory for zero and both non-zero real and imaginary chemical potential mu. To this aim we prove a theorem that relates integrals over fermionic and bosonic variables to super-Hermitian or super-Unitary groups also called superbosonization. Our findings extend previous results for the equivalence of the partition functions, spectral densities and the quenched two-point densities. We can show that all k-point density correlation functions agree in both theories for an arbitrary number of quark flavors, for either mu=0 or mu=/=0 taking real or imaginary values. This implies the equivalence for all individual k-th eigenvalue distributions which are particularly useful to determine low energy constants from Lattice QCD with chiral fermions
Long time, large scale limit of the Wigner transform for a system of linear oscillators in one dimension
We consider the long time, large scale behavior of the Wigner transform
W_\eps(t,x,k) of the wave function corresponding to a discrete wave equation
on a 1-d integer lattice, with a weak multiplicative noise. This model has been
introduced in Basile, Bernardin, and Olla to describe a system of interacting
linear oscillators with a weak noise that conserves locally the kinetic energy
and the momentum. The kinetic limit for the Wigner transform has been shown in
Basile, Olla, and Spohn. In the present paper we prove that in the unpinned
case there exists such that for any the
weak limit of W_\eps(t/\eps^{3/2\gamma},x/\eps^{\gamma},k), as \eps\ll1,
satisfies a one dimensional fractional heat equation with . In the pinned case an analogous
result can be claimed for W_\eps(t/\eps^{2\gamma},x/\eps^{\gamma},k) but the
limit satisfies then the usual heat equation
Finite size scaling of meson propagators with isospin chemical potential
We determine the volume and mass dependence of scalar and pseudoscalar two-point functions in N_f-flavour QCD, in the presence of an isospin chemical potential and at fixed gauge-field topology. We obtain these results at second order in the \epsilon-expansion of Chiral Perturbation Theory and evaluate all relevant zero-mode group integrals analytically. The virtue of working with a non-vanishing chemical potential is that it provides the correlation functions with a dependence on both the chiral condensate, \Sigma, and the pion decay constant, F, already at leading order. Our results may therefore be useful for improving the determination of these constants from lattice QCD calculations. As a side product, we rectify an earlier calculation of the O(\epsilon^2) finite-volume correction to the decay constant appearing in the partition function. We also compute a generalised partition function which is useful for evaluating U(N_f) group integrals
Thermal conductivity of the Toda lattice with conservative noise
We study the thermal conductivity of the one dimensional Toda lattice
perturbed by a stochastic dynamics preserving energy and momentum. The strength
of the stochastic noise is controlled by a parameter . We show that
heat transport is anomalous, and that the thermal conductivity diverges with
the length of the chain according to , with . In particular, the ballistic heat conduction of the
unperturbed Toda chain is destroyed. Besides, the exponent of the
divergence depends on
Designing a Mobile App for Museums According to the Drivers of Visitor Satisfaction
The aim of this study is to identify the key factors as antecedents of visitor satisfaction for the design of a mobile app for museums. To our aim we use the Kano model that allows to categorize service attributes according to how they are perceived by customers and to estimate their impact on customer satisfaction. We collected qualitative data trough 300 questionnaires administered to tourists visiting the Sicilian cities of Palermo and Trapani over a period of 3 months (October- December 2012). The results of our analysis can be relevant for museum and public managers to plan strategic and operative activities, for researcher in the field of touristic marketing, for application developers, and for all those concerned with touristic and cultural heritage issues
Thermal conductivity in harmonic lattices with random collisions
We review recent rigorous mathematical results about the macroscopic
behaviour of harmonic chains with the dynamics perturbed by a random exchange
of velocities between nearest neighbor particles. The random exchange models
the effects of nonlinearities of anharmonic chains and the resulting dynamics
have similar macroscopic behaviour. In particular there is a superdiffusion of
energy for unpinned acoustic chains. The corresponding evolution of the
temperature profile is governed by a fractional heat equation. In non-acoustic
chains we have normal diffusivity, even if momentum is conserved.Comment: Review paper, to appear in the Springer Lecture Notes in Physics
volume "Thermal transport in low dimensions: from statistical physics to
nanoscale heat transfer" (S. Lepri ed.
Fluctuations in Hadronic and Nuclear Collisions
We investigate several fluctuation effects in high-energy hadronic and
nuclear collisions through the analysis of different observables. To introduce
fluctuations in the initial stage of collisions, we use the Interacting Gluon
Model (IGM) modified by the inclusion of the impact parameter. The inelasticity
and leading-particle distributions follow directly from this model. The
fluctuation effects on rapidity distributions are then studied by using
Landau's Hydrodynamic Model in one dimension. To investigate further the
effects of the multiplicity fluctuation, we use the Longitudinal Phase-Space
Model, with the multiplicity distribution calculated within the hydrodynamic
model, and the initial conditions given by the IGM. Forward-backward
correlation is obtained in this way.Comment: 22 pages, RevTex, 8 figures (included); Invited paper to the special
issue of Foundation of Physics dedicated to Mikio Namiki's 70th. birthda
The drivers of customer satisfaction for academic library services: managerial hints from an empirical study on two Italian university libraries using the Kano model
The intent of this qualitative research is to investigate and understand the requisites of customer satisfaction for academic libraries’ users and to give managerial hints for the implementation of user centred academic library services. To this aim, we analyse the library services of two Italian Universities (the Faculty of Economics of University of Palermo and the Central Library of the University of Salerno) to find relations and congruencies and to evaluate the perceived relevance of the tangible and intangible aspects of these services. In the preliminary phase of the research, we conducted both focus groups and individual interviews involving students or researchers who regularly use the library services. This study supplies a significant analysis of qualitative data that can be functional for researchers and for university managers to plan strategic and operative activities in order to improve academic library services
Chiral Lagrangian and spectral sum rules for dense two-color QCD
We analytically study two-color QCD with an even number of flavors at high
baryon density. This theory is free from the fermion sign problem. Chiral
symmetry is broken spontaneously by the diquark condensate. Based on the
symmetry breaking pattern we construct the low-energy effective Lagrangian for
the Nambu-Goldstone bosons. We identify a new epsilon-regime at high baryon
density in which the quark mass dependence of the partition function can be
determined exactly. We also derive Leutwyler-Smilga-type spectral sum rules for
the complex eigenvalues of the Dirac operator in terms of the fermion gap. Our
results can in principle be tested in lattice QCD simulations.Comment: 24 pages, 1 table, no figur
Superdiffusion of energy in Hamiltonian systems perturbed by a conservative noise
We review some recent results on the anomalous diffusion of energy in systems
of 1D coupled oscillators and we revisit the role of momentum conservation.Comment: Proceedings of the conference PSPDE 2012
https://sites.google.com/site/meetingpspde
- …
