52 research outputs found

    NMR-Untersuchungen zu dynamischen Umfaltungsprozessen in RNA-Molekülen

    Get PDF
    The following thesis is concerned with the elucidation of structural changes of RNA molecules during the time course of dynamic processes that are commonly denoted as folding reactions. In contrast to the field of protein folding, the concept of RNA folding comprises not only folding reactions itself but also refolding- or conformational switching- and assembly processes (see chapter III). The method in this thesis to monitor these diverse processes is high resolution liquid-state NMR spectroscopy. To understand the reactions is of considerable interest, because most biological active RNA molecules function by changing their conformation. This can be either an intrinsic property of their respective sequence or may happen in response to a cellular signal such as small molecular ligand binding (like in the aptamer and riboswitch case), protein or metal binding. The first part of the thesis (chapters II & III) provides a general overview over the field of RNA structure and RNA folding. The two chapters aim at introducing the reader into the current status of research in the field. Chapters II is structured such that primary structure is first described then secondary and tertiary structure elements of RNA structure. A special emphasis is given to bistable RNA systems that are functionally important and represent models to understand fundamental questions of RNA conformational switching. RNA folding in vitro as well as in vivo situations is discussed in Chapter III. The following chapters IV and V also belong to the introduction part and review critically the NMR methods that were used to understand the nature and the dynamics of the conformational/structural transitions in RNA. A general overview of NMR methods quantifying dynamics of biomolecules is provided in chapter IV. A detailed discussion of solvent exchange rates and time-resolved NMR, as the two major techniques used, follows. In the final chapter V of the first part the NMR parameters used in structure calculation and structure calculation itself are conferred. The second part of the thesis, which is the cumulative part, encompasses the conducted original work. Chapter VI reviews the general NMR techniques applied and explains their applicability in the field of RNA structural and biochemical studies in several model cases. Chapter VII describes the achievement of a complete resonance assignment of an RNA model molecule (14mer cUUCGg tetral-loop RNA) and introduces a new technique to assign quaternary carbon resonances of the nucleobases. Furthermore, it reports on a conformational analysis of the sugar backbone in this RNA hairpin molecule in conjunction with a parameterization of 1J scalar couplings. Achievements: • Establishment of two new NMR pulse-sequences facilitating the assignment of quaternary carbons in RNA nucleobases • First complete (99.5%) NMR resonance assignment of an RNA molecule (14mer) including 1H, 13C, 15N, 31P resonances • Description of RNA backbone conformation by a complete set of NMR parameters • Description of the backbone conformational dependence in RNA of new NMR parameters (1J scalar couplings) Chapters VII & VIII summarize the real-NMR studies that were conducted to elucidate the conformational switching events of several RNA systems. Chapter VIII gives an overview on the experiments that were accomplished on three different bistable RNAs. These molecules where chosen to be good model systems for RNA refolding reactions and so consequently served as reporters of conformational switching events of RNA secondary structure elements. Achievements: • First kinetic studies of RNA refolding reactions with atomic resolution by NMR • Application of [new] RT-NMR techniques either regarding the photolytic initiation of the reaction or regarding the readout of the reaction • Discovery of different RNA refolding mechanisms for different RNA molecules Deciphering of a general rule for RNA refolding methodology to conformational switching processes of RNA tertiary structure elements. The models for these processes were a) the guanine-dependent riboswitch RNA and b) the minimal hammerhead ribozyme. Achievements: • NMR spectroscopic assignment of imino-resonances of the hypoxanthine bound guanine-dependent riboswitch RNA • Application of RT-NMR techniques to monitor the ligand induced conformational switch of the aptamer domain of the guanine-dependent riboswitch RNA at atomic resolution • Translation of kinetic information into structural information • Deciphering a folding mechanism for the guanine riboswitch aptamer domain • Application of RT-NMR techniques to monitor the reaction of the catalytically active mHHR RNA at atomic resolution In the appendices the new NMR pulse-sequences and the experimental parameters are described, which are not explicitly treated in the respective manuscripts.Die vorliegende Doktorarbeit beschäftigt sich mit den strukturellen Änderungen in RNA Molekülen während dynamischer konformationeller Änderungen, die gemeinhin als RNA-Faltung bezeichnet werden. Im Gegensatz zur Proteinfaltung sind RNA-Faltungsprozesse nicht exklusiv als die Faltung einer definierten Konformation aus einem Ensemble an ungefalteten, d.h. ausgehend von unstrukturierten Molekülen, zu verstehen. RNA-Faltung beinhaltet vielmehr die strukturelle Umwandlung verschiedener stabiler Konformationen (die als RNA-Umfaltung benannt wird) und den Aufbau von molekularen Komplexen aus mehreren Molekülen (siehe Kapitel III). Die experimentelle Technik, die hier zur Untersuchung dieser Prozesse genutzt wurde, ist die hochauflösende Flüssig-NMR-Spektroskopie. Das Verständnis der strukturellen und biophysikalischen Grundlagen solcher Umfaltungsreaktionen von RNA ist essentiell, da solche konformationellen Änderungen die biologische Funktion der Moleküle modulieren. Dabei ist zu bemerken, dass eine Umfaltungsreaktion eine intrinsische Eigenschaft einer gegebenen RNA-Sequenz sein kann oder die Antwort auf ein externes zelluläres Signal, wie die Bindung eines niedermolekularen Liganden (z.B. in Aptameren und in Riboswitch RNAs), eines Proteins oder eines Metall-Ions. Der erste Teil dieser Doktorarbeit (Kapitel I & II) hält einen Überblick über die Themengebiete RNA-Struktur und RNA-Faltung bereit. Beide Kapitel führen in den derzeitigen Stand der Forschung ein. Kapitel II führt dabei entlang der hierarchischen Ordnung von RNA Molekülen und diskutiert die Eigenschaften von Primär-, Sekundär- und Tertiär-Strukturelementen. Ein besonderes Augenmerk wird dabei auf bistabile RNA Systeme gelegt; ihre wichtige biologische Funktionalität wird dargestellt, ebenso wird das Potential ausgeleuchtet, diese funktionale Klasse von RNA Molekülen als Modellsysteme zu nutzen, um fundamentale Fragen zu konformationellen Übergängen in RNA zu beantworten. In Kapitel III folgt sodann die Diskussion über RNA-Faltung in in vitro Experimenten als auch im zellulären Kontext (in vivo). Die Kapitel IV und V besprechen die NMR-spektroskopischen Techniken, die genutzt werden, um die Art und die dynamischen Eigenschaften von konformationellen/strukturellen Umwandlungen in RNA zu untersuchen. Hierbei wird der Schwerpunkt auf die verwendeten Techniken des Wasseraustauschs an labilen Protonen und der zeitaufgelösten NMR-Spektroskopie gelegt. Der zweite Teil der Doktorarbeit fasst kumulativ die durchgeführten Studien zusammen. Kapitel VI bespricht hierbei die grundlegenden NMR Techniken, die zur Strukturaufklärung von RNA Molekülen angewendet werden und zeigt deren Anwendungsmöglichkeiten an unterschiedlichen Beispielen von strukturellen und biochemischen Studien. Das folgende Kapitel VII beschreibt die komplette Resonanzzuordnung eines RNA Modell-Moleküls (14mer cUUCGg tetra-loop RNA) und stellt eine neue Pulstechnik vor, die zur Zuordnung der Resonanzen von quatären Kohlenstoffen in Purinbasen benützt werden kann. Weiterhin schließt sich ein Report an, wie die Konformation des Zuckerrückgrates in RNA-Molekülen bestimmt wird und schlägt mittels einer an oben genanntem Modellsystem durchgeführte Parametrisierung 1J skalare Kopplungen als neue Strukturparameter vor. Kapitel VII & VIII fassen die hierzu durchgeführten RT-NMR Studien zusammen. Kapitel VIII gibt hierbei einen Überblick über die Untersuchungen an drei bistabilen RNA-Systemen. Diese Moleküle wurden ausgewählt, da sie als Modelle für RNA-Umfaltungsreakionen dienen. Das finale Kapitel IX behandelt die Anwendung der oben ausgeführten neuen Methodologie auf konformationelle Umwandlungen von RNA Tertiär-Strukturelementen: a) Guanin-abhängige Riboswitch RNA (GSW) und b) Minimales "hammerhead" Ribozym (mHHR)

    High-resolution NMR structure of an RNA model system : the 14-mer cUUCGg tetraloop hairpin RNA

    Get PDF
    We present a high-resolution nuclear magnetic resonance (NMR) solution structure of a 14-mer RNA hairpin capped by cUUCGg tetraloop. This short and very stable RNA presents an important model system for the study of RNA structure and dynamics using NMR spectroscopy, molecular dynamics (MD) simulations and RNA force-field development. The extraordinary high precision of the structure (root mean square deviation of 0.3 Å) could be achieved by measuring and incorporating all currently accessible NMR parameters, including distances derived from nuclear Overhauser effect (NOE) intensities, torsion-angle dependent homonuclear and heteronuclear scalar coupling constants, projection-angle-dependent cross-correlated relaxation rates and residual dipolar couplings. The structure calculations were performed with the program CNS using the ARIA setup and protocols. The structure quality was further improved by a final refinement in explicit water using OPLS force field parameters for non-bonded interactions and charges. In addition, the 2'-hydroxyl groups have been assigned and their conformation has been analyzed based on NOE contacts. The structure currently defines a benchmark for the precision and accuracy amenable to RNA structure determination by NMR spectroscopy. Here, we discuss the impact of various NMR restraints on structure quality and discuss in detail the dynamics of this system as previously determined

    Study of E. coli Hfq's RNA annealing acceleration and duplex destabilization activities using substrates with different GC-contents

    Get PDF
    Folding of RNA molecules into their functional three-dimensional structures is often supported by RNA chaperones, some of which can catalyse the two elementary reactions helix disruption and helix formation. Hfq is one such RNA chaperone, but its strand displacement activity is controversial. Whereas some groups found Hfq to destabilize secondary structures, others did not observe such an activity with their RNA substrates. We studied Hfq’s activities using a set of short RNAs of different thermodynamic stabilities (GC-contents from 4.8% to 61.9%), but constant length. We show that Hfq’s strand displacement as well as its annealing activity are strongly dependent on the substrate’s GC-content. However, this is due to Hfq’s preferred binding of AU-rich sequences and not to the substrate’s thermodynamic stability. Importantly, Hfq catalyses both annealing and strand displacement with comparable rates for different substrates, hinting at RNA strand diffusion and annealing nucleation being rate-limiting for both reactions. Hfq’s strand displacement activity is a result of the thermodynamic destabilization of the RNA through preferred single-strand binding whereas annealing acceleration is independent from Hfq’s thermodynamic influence. Therefore, the two apparently disparate activities annealing acceleration and duplex destabilization are not in energetic conflict with each other

    High-resolution NMR structure of an RNA model system: the 14-mer cUUCGg tetraloop hairpin RNA

    Get PDF
    We present a high-resolution nuclear magnetic resonance (NMR) solution structure of a 14-mer RNA hairpin capped by cUUCGg tetraloop. This short and very stable RNA presents an important model system for the study of RNA structure and dynamics using NMR spectroscopy, molecular dynamics (MD) simulations and RNA force-field development. The extraordinary high precision of the structure (root mean square deviation of 0.3 Å) could be achieved by measuring and incorporating all currently accessible NMR parameters, including distances derived from nuclear Overhauser effect (NOE) intensities, torsion-angle dependent homonuclear and heteronuclear scalar coupling constants, projection-angle-dependent cross-correlated relaxation rates and residual dipolar couplings. The structure calculations were performed with the program CNS using the ARIA setup and protocols. The structure quality was further improved by a final refinement in explicit water using OPLS force field parameters for non-bonded interactions and charges. In addition, the 2′-hydroxyl groups have been assigned and their conformation has been analyzed based on NOE contacts. The structure currently defines a benchmark for the precision and accuracy amenable to RNA structure determination by NMR spectroscopy. Here, we discuss the impact of various NMR restraints on structure quality and discuss in detail the dynamics of this system as previously determined

    Interplay of ‘induced fit’ and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch

    Get PDF
    Riboswitches are highly structured elements in the 5′-untranslated regions (5′-UTRs) of messenger RNA that control gene expression by specifically binding to small metabolite molecules. They consist of an aptamer domain responsible for ligand binding and an expression platform. Ligand binding in the aptamer domain leads to conformational changes in the expression platform that result in transcription termination or abolish ribosome binding. The guanine riboswitch binds with high-specificity to guanine and hypoxanthine and is among the smallest riboswitches described so far. The X-ray-structure of its aptamer domain in complex with guanine/hypoxanthine reveals an intricate RNA-fold consisting of a three-helix junction stabilized by long-range base pairing interactions. We analyzed the conformational transitions of the aptamer domain induced by binding of hypoxanthine using high-resolution NMR-spectroscopy in solution. We found that the long-range base pairing interactions are already present in the free RNA and preorganize its global fold. The ligand binding core region is lacking hydrogen bonding interactions and therefore likely to be unstructured in the absence of ligand. Mg(2+)-ions are not essential for ligand binding and do not change the structure of the RNA-ligand complex but stabilize the structure at elevated temperatures. We identified a mutant RNA where the long-range base pairing interactions are disrupted in the free form of the RNA but form upon ligand binding in an Mg(2+)-dependent fashion. The tertiary interaction motif is stable outside the riboswitch context

    Dynamics of Bacteriorhodopsin in the Dark‐Adapted State from Solution NMR

    Full text link
    To achieve efficient proton pumping in the light-driven proton pump bacteriorhodopsin, the protein must be tightly coupled to the retinal to rapidly convert retinal isomerization into protein structural rearrangements. Methyl group dynamics of bR embedded in lipid nanodiscs were determined in the dark-adapted state, and were found to be mostly well-ordered at the cytosolic side. Methyl groups in the M145A mutant of bR, which displays only 10% residual proton pumping activity, are less well ordered suggesting a link between side chain dynamics on the cytosolic side of the bR cavity and proton pumping activity. In addition, slow conformational exchange, attributed to low frequency motions of aromatic rings, was indirectly observed for residues on the extracellular side of the bR cavity. This may be related to reorganization of the water network. These observations provide a detailed picture of previously undescribed equilibrium dynamics on different time scales for ground-state bR

    13C-direct detected NMR experiments for the sequential J-based resonance assignment of RNA oligonucleotides

    Get PDF
    We present here a set of 13C-direct detected NMR experiments to facilitate the resonance assignment of RNA oligonucleotides. Three experiments have been developed: (1) the (H)CC-TOCSY-experiment utilizing a virtual decoupling scheme to assign the intraresidual ribose 13C-spins, (2) the (H)CPC-experiment that correlates each phosphorus with the C4′ nuclei of adjacent nucleotides via J(C,P) couplings and (3) the (H)CPC-CCH-TOCSY-experiment that correlates the phosphorus nuclei with the respective C1′,H1′ ribose signals. The experiments were applied to two RNA hairpin structures. The current set of 13C-direct detected experiments allows direct and unambiguous assignment of the majority of the hetero nuclei and the identification of the individual ribose moieties following their sequential assignment. Thus, 13C-direct detected NMR methods constitute useful complements to the conventional 1H-detected approach for the resonance assignment of oligonucleotides that is often hindered by the limited chemical shift dispersion. The developed methods can also be applied to large deuterated RNAs

    The RNA annealing mechanism of the HIV-1 Tat peptide: conversion of the RNA into an annealing-competent conformation

    Get PDF
    The annealing of nucleic acids to (partly) complementary RNA or DNA strands is involved in important cellular processes. A variety of proteins have been shown to accelerate RNA/RNA annealing but their mode of action is still mainly uncertain. In order to study the mechanism of protein-facilitated acceleration of annealing we selected a short peptide, HIV-1 Tat(44–61), which accelerates the reaction efficiently. The activity of the peptide is strongly regulated by mono- and divalent cations which hints at the importance of electrostatic interactions between RNA and peptide. Mutagenesis of the peptide illustrated the dominant role of positively charged amino acids in RNA annealing—both the overall charge of the molecule and a precise distribution of basic amino acids within the peptide are important. Additionally, we found that Tat(44–61) drives the RNA annealing reaction via entropic rather than enthalpic terms. One-dimensional-NMR data suggest that the peptide changes the population distribution of possible RNA structures to favor an annealing-prone RNA conformation, thereby increasing the fraction of colliding RNA molecules that successfully anneal

    ¹H, ¹³C and ¹⁵N and ³¹P chemical shift assignment for stem-loop 4 from the 5′-UTR of SARS-CoV-2

    Get PDF
    The SARS-CoV-2 virus is the cause of the respiratory disease COVID-19. As of today, therapeutic interventions in severe COVID-19 cases are still not available as no effective therapeutics have been developed so far. Despite the ongoing development of a number of effective vaccines, therapeutics to fight the disease once it has been contracted will still be required. Promising targets for the development of antiviral agents against SARS-CoV-2 can be found in the viral RNA genome. The 5′- and 3′-genomic ends of the 30 kb SCoV-2 genome are highly conserved among Betacoronaviruses and contain structured RNA elements involved in the translation and replication of the viral genome. The 40 nucleotides (nt) long highly conserved stem-loop 4 (5_SL4) is located within the 5′-untranslated region (5′-UTR) important for viral replication. 5_SL4 features an extended stem structure disrupted by several pyrimidine mismatches and is capped by a pentaloop. Here, we report extensive ¹H, ¹³C and ¹⁵N and ³¹P resonance assignments of 5_SL4 as the basis for in-depth structural and ligand screening studies by solution NMR spectroscopy

    Comprehensive Fragment Screening of the SARS-CoV-2 Proteome Explores Novel Chemical Space for Drug Development

    Get PDF
    12 pags., 4 figs., 3 tabs.SARS-CoV-2 (SCoV2) and its variants of concern pose serious challenges to the public health. The variants increased challenges to vaccines, thus necessitating for development of new intervention strategies including anti-virals. Within the international Covid19-NMR consortium, we have identified binders targeting the RNA genome of SCoV2. We established protocols for the production and NMR characterization of more than 80 % of all SCoV2 proteins. Here, we performed an NMR screening using a fragment library for binding to 25 SCoV2 proteins and identified hits also against previously unexplored SCoV2 proteins. Computational mapping was used to predict binding sites and identify functional moieties (chemotypes) of the ligands occupying these pockets. Striking consensus was observed between NMR-detected binding sites of the main protease and the computational procedure. Our investigation provides novel structural and chemical space for structure-based drug design against the SCoV2 proteome.Work at BMRZ is supported by the state of Hesse. Work in Covid19-NMR was supported by the Goethe Corona Funds, by the IWBEFRE-program 20007375 of state of Hesse, the DFG through CRC902: “Molecular Principles of RNA-based regulation.” and through infrastructure funds (project numbers: 277478796, 277479031, 392682309, 452632086, 70653611) and by European Union’s Horizon 2020 research and innovation program iNEXT-discovery under grant agreement No 871037. BY-COVID receives funding from the European Union’s Horizon Europe Research and Innovation Programme under grant agreement number 101046203. “INSPIRED” (MIS 5002550) project, implemented under the Action “Reinforcement of the Research and Innovation Infrastructure,” funded by the Operational Program “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and co-financed by Greece and the EU (European Regional Development Fund) and the FP7 REGPOT CT-2011-285950—“SEE-DRUG” project (purchase of UPAT’s 700 MHz NMR equipment). The support of the CERM/CIRMMP center of Instruct-ERIC is gratefully acknowledged. This work has been funded in part by a grant of the Italian Ministry of University and Research (FISR2020IP_02112, ID-COVID) and by Fondazione CR Firenze. A.S. is supported by the Deutsche Forschungsgemeinschaft [SFB902/B16, SCHL2062/2-1] and the Johanna Quandt Young Academy at Goethe [2019/AS01]. M.H. and C.F. thank SFB902 and the Stiftung Polytechnische Gesellschaft for the Scholarship. L.L. work was supported by the French National Research Agency (ANR, NMR-SCoV2-ORF8), the Fondation de la Recherche Médicale (FRM, NMR-SCoV2-ORF8), FINOVI and the IR-RMN-THC Fr3050 CNRS. Work at UConn Health was supported by grants from the US National Institutes of Health (R01 GM135592 to B.H., P41 GM111135 and R01 GM123249 to J.C.H.) and the US National Science Foundation (DBI 2030601 to J.C.H.). Latvian Council of Science Grant No. VPP-COVID-2020/1-0014. National Science Foundation EAGER MCB-2031269. This work was supported by the grant Krebsliga KFS-4903-08-2019 and SNF-311030_192646 to J.O. P.G. (ITMP) The EOSC Future project is co-funded by the European Union Horizon Programme call INFRAEOSC-03-2020—Grant Agreement Number 101017536. Open Access funding enabled and organized by Projekt DEALPeer reviewe
    corecore