424 research outputs found

    Integral Grothendieck-Riemann-Roch theorem

    Full text link
    We show that, in characteristic zero, the obvious integral version of the Grothendieck-Riemann-Roch formula obtained by clearing the denominators of the Todd and Chern characters is true (without having to divide the Chow groups by their torsion subgroups). The proof introduces an alternative to Grothendieck's strategy: we use resolution of singularities and the weak factorization theorem for birational maps.Comment: 24 page

    Ultraviolet Complete Electroweak Model Without a Higgs Particle

    Full text link
    An electroweak model with running coupling constants described by an energy dependent entire function is utraviolet complete and avoids unitarity violations for energies above 1 TeV. The action contains no physical scalar fields and no Higgs particle and the physical electroweak model fields are local and satisfy microcausality. The WW and ZZ masses are compatible with a symmetry breaking SU(2)L×U(1)Y→U(1)emSU(2)_L\times U(1)_Y \rightarrow U(1)_{\rm em}, which retains a massless photon. The vertex couplings possess an energy scale ΛW>1\Lambda_W > 1 TeV predicting scattering amplitudes that can be tested at the LHC.Comment: 19 pages, no figures, LaTex file. Equation and text corrected. Reference added. Results remain the same. Final version published in European Physics Journal Plus, 126 (2011

    Cohomology of skew-holomorphic Lie algebroids

    Get PDF
    We introduce the notion of skew-holomorphic Lie algebroid on a complex manifold, and explore some cohomologies theories that one can associate to it. Examples are given in terms of holomorphic Poisson structures of various sorts.Comment: 16 pages. v2: Final version to be published in Theor. Math. Phys. (incorporates only very minor changes

    Weak splittings of quotients of Drinfeld and Heisenberg doubles

    Full text link
    We investigate the fine structure of the simplectic foliations of Poisson homogeneous spaces. Two general results are proved for weak splittings of surjective Poisson submersions from Heisenberg and Drinfeld doubles. The implications of these results are that the torus orbits of symplectic leaves of the quotients can be explicitly realized as Poisson-Dirac submanifolds of the torus orbits of the doubles. The results have a wide range of applications to many families of real and complex Poisson structures on flag varieties. Their torus orbits of leaves recover important families of varieties such as the open Richardson varieties.Comment: 20 pages, AMS Late

    Ultraviolet Complete Quantum Gravity

    Full text link
    An ultraviolet complete quantum gravity theory is formulated in which vertex functions in Feynman graphs are entire functions and the propagating graviton is described by a local, causal propagator. The cosmological constant problem is investigated in the context of the ultraviolet complete quantum gravity.Comment: 11 pages, no figures. Changes to text. Results remain the same. References added. To be published in European Physics Journal Plu

    Support varieties for selfinjective algebras

    Full text link
    Support varieties for any finite dimensional algebra over a field were introduced by Snashall-Solberg using graded subalgebras of the Hochschild cohomology. We mainly study these varieties for selfinjective algebras under appropriate finite generation hypotheses. Then many of the standard results from the theory of support varieties for finite groups generalize to this situation. In particular, the complexity of the module equals the dimension of its corresponding variety, all closed homogeneous varieties occur as the variety of some module, the variety of an indecomposable module is connected, periodic modules are lines and for symmetric algebras a generalization of Webb's theorem is true

    Continuous non-perturbative regularization of QED

    Full text link
    We regularize in a continuous manner the path integral of QED by construction of a non-local version of its action by means of a regularized form of Dirac's δ\delta functions. Since the action and the measure are both invariant under the gauge group, this regularization scheme is intrinsically non-perturbative. Despite the fact that the non-local action converges formally to the local one as the cutoff goes to infinity, the regularized theory keeps trace of the non-locality through the appearance of a quadratic divergence in the transverse part of the polarization operator. This term which is uniquely defined by the choice of the cutoff functions can be removed by a redefinition of the regularized action. We notice that as for chiral fermions on the lattice, there is an obstruction to construct a continuous and non ambiguous regularization in four dimensions. With the help of the regularized equations of motion, we calculate the one particle irreducible functions which are known to be divergent by naive power counting at the one loop order.Comment: 23 pages, LaTeX, 5 Encapsulated Postscript figures. Improved and revised version, to appear in Phys. Rev.

    ‘Warrant’ revisited: Integrating mathematics teachers’ pedagogical and epistemological considerations into Toulmin’s model for argumentation

    Get PDF
    In this paper, we propose an approach to analysing teacher arguments that takes into account field dependence—namely, in Toulmin’s sense, the dependence of warrants deployed in an argument on the field of activity to which the argument relates. Freeman, to circumvent issues that emerge when we attempt to determine the field(s) that an argument relates to, proposed a classification of warrants (a priori, empirical, institutional and evaluative). Our approach to analysing teacher arguments proposes an adaptation of Freeman’s classification that distinguishes between: epistemological and pedagogical a priori warrants, professional and personal empirical warrants, epistemological and curricular institutional warrants, and evaluative warrants. Our proposition emerged from analyses conducted in the course of a written response and interview study that engages secondary mathematics teachers with classroom scenarios from the mathematical areas of analysis and algebra. The scenarios are hypothetical, grounded on seminal learning and teaching issues, and likely to occur in actual practice. To illustrate our proposed approach to analysing teacher arguments here, we draw on the data we collected through the use of one such scenario, the Tangent Task. We demonstrate how teacher arguments, not analysed for their mathematical accuracy only, can be reconsidered, arguably more productively, in the light of other teacher considerations and priorities: pedagogical, curricular, professional and personal

    Automatic regularization by quantization in reducible representations of CCR: Point-form quantum optics with classical sources

    Full text link
    Electromagnetic fields are quantized in manifestly covariant way by means of a class of reducible representations of CCR. Aa(x)A_a(x) transforms as a Hermitian four-vector field in Minkowski four-position space (no change of gauge), but in momentum space it splits into spin-1 massless photons (optics) and two massless scalars (similar to dark matter). Unitary dynamics is given by point-form interaction picture, with minimal-coupling Hamiltonian constructed from fields that are free on the null-cone boundary of the Milne universe. SL(2,C) transformations and dynamics are represented unitarily in positive-norm Hilbert space describing NN four-dimensional oscillators. Vacuum is a Bose-Einstein condensate of the NN-oscillator gas. Both the form of Aa(x)A_a(x) and its transformation properties are determined by an analogue of the twistor equation. The same equation guarantees that the subspace of vacuum states is, as a whole, Poincar\'e invariant. The formalism is tested on quantum fields produced by pointlike classical sources. Photon statistics is well defined even for pointlike charges, with UV/IR regularizations occurring automatically as a consequence of the formalism. The probabilities are not Poissonian but of a R\'enyi type with α=1−1/N\alpha=1-1/N. The average number of photons occurring in Bremsstrahlung splits into two parts: The one due to acceleration, and the one that remains nonzero even if motion is inertial. Classical Maxwell electrodynamics is reconstructed from coherent-state averaged solutions of Heisenberg equations. Static pointlike charges polarize vacuum and produce effective charge densities and fields whose form is sensitive to both the choice of representation of CCR and the corresponding vacuum state.Comment: 2 eps figures; in v2 notation in Eq. (39) and above Eq. (38) is correcte
    • …
    corecore