4,962 research outputs found

    Early Enrichment of the Intergalactic Medium and its Feedback on Galaxy Formation

    Get PDF
    Supernova-driven outflows from early galaxies may have had a large impact on the kinetic and chemical structure of the intergalactic medium (IGM). We use three-dimensional Monte Carlo cosmological realizations of a simple linear peaks model to track the time evolution of such metal-enriched outflows and their feedback on galaxy formation. We find that at most 30% of the IGM by volume is enriched to values above 10^-3 solar in models that only include objects that cool by atomic transitions. The majority of enrichment occurs relatively early (5 < z < 12) and resulting in a mass-averaged cosmological metallicity between 10^-3 and 10^-1.5 solar. The inclusion of Population III objects that cool through H2 line emission has only a minor impact on these results: increasing the mean metallicity and filling factor by at most a factor of 1.4, and moving the dawn of the enrichment epoch to a redshift of approximately 14 at the earliest. Thus enrichment by outflowing galaxies is likely to have been incomplete and inhomogeneous, biased to the areas near the starbursting galaxies themselves. Models with a 10% star formation efficiency can satisfactorily reproduce the nearly constant (2 < z < 5, Z approximately 3.5 x 10^-4 solar) metallicity of the low column density Ly-alpha forest derived by Songaila (2001), an effect of the decreasing efficiency of metal loss from larger galaxies. Finally, we show that IGM enrichment is intimately tied to the ram-pressure stripping of baryons from neighboring perturbations. This results in the suppression of at least 20% of the dwarf galaxies in the mass range 10^8.5 to 10^9.5 solar, in all models with filling factors greater than 2%, and an overall suppression of approximately 50% of dwarf galaxies in the most observationally-favored model.Comment: 8 pages, 5 figures, accepted to Ap

    Terrace grading of SiGe for high-quality virtual substrates

    Get PDF
    Silicon germanium (SiGe) virtual substrates of final germanium composition x = 0.50 have been fabricated using solid-source molecular beam epitaxy with a thickness of 2 µm. A layer structure that helps limit the size of dislocation pileups associated with the modified Frank–Read dislocation multiplication mechanism has been studied. It is shown that this structure can produce lower threading dislocation densities than conventional linearly graded virtual substrates. Cross-sectional transmission electron microscopy shows the superior quality of the dislocation network in the graded regions with a lower rms roughness shown by atomic force microscopy. X-ray diffractometry shows these layers to be highly relaxed. This method of Ge grading suggests that high-quality virtual substrates can be grown considerably thinner than with conventional grading methods

    Misfit strain relaxation and dislocation formation in supercritical strained silicon on virtual substrates

    Get PDF
    Relaxation of strained silicon on 20% linear graded virtual substrates was quantified using high resolution x-ray diffraction and a defect etching technique. The thickness of strained silicon was varied between 10 and 180 nm. Relaxation was observed in layers below the critical thickness but increased to only 2% relaxation in the thickest layers even with annealings up to 950 °C. Cross-sectional transmission electron microscopy revealed stacking faults present in layers thicker than 25 nm, and nucleated 90° Shockley partial dislocations forming microtwins in the thickest layer. These features are implicated in the impediment of the relaxation process

    Hole density dependence of effective mass, mobility and transport time in strained Ge channel modulation-doped heterostructures

    Get PDF
    We performed systematic low-temperature (T = 350 mK–15 K) magnetotransport measurements on the two-dimensional hole gas with various sheet carrier densities Ps = (0.57–2.1)×1012 cm–2 formed in the strained Ge channel modulation-doped (MOD) SiGe heterostructures grown on Si substrates. It was found that the effective hole mass deduced by temperature dependent Shubnikov–de Hass oscillations increased monotonically from (0.087±0.05)m0 to (0.19±0.01)m0 with the increase of Ps, showing large band nonparabolicity in strained Ge. In contrast to this result, the increase of the mobility with increasing Ps (up to 29 000 cm2/V s) was observed, suggesting that Coulomb scattering played a dominant role in the transport of the Ge channel at low temperatures. In addition, the Dingle ratio of the transport time to the quantum lifetime was found to increase with increasing Ps, which was attributed to the increase of remote impurity scattering with the increase of the doping concentration in MOD SiGe layers

    Reduced 1/f noise in p-Si0.3Ge0.7 metamorphic metal–oxide–semiconductor field-effect transistor

    Get PDF
    We have demonstrated reduced 1/f low-frequency noise in sub-µm metamorphic high Ge content p-Si0.3Ge0.7 metal–oxide–semiconductor field-effect transistors (MOSFETs) at 293 K. Three times lower normalized power spectral density (NPSD) SID/ID2 of drain current fluctuations over the 1–100 Hz range at VDS = –50 mV and VG–Vth = –1.5 V was measured for a 0.55 µm effective gate length p-Si0.3Ge0.7 MOSFET compared with a p-Si MOSFET. Performed quantitative analysis clearly demonstrates the importance of carrier number fluctuations and correlated mobility fluctuations (CMFs) components of 1/f noise for p-Si surface channel MOSFETs, and the absence of CMFs for p-Si0.3Ge0.7 buried channel MOSFETs. This explains the reduced NPSD for p-Si0.3Ge0.7 MOSFETs in strong inversion

    A Spitzer IRAC Census of the Asymptotic Giant Branch Populations in Local Group Dwarfs. II. IC 1613

    Full text link
    We present Spitzer Space Telescope IRAC photometry of the Local Group dwarf irregular galaxy IC 1613. We compare our 3.6, 4.5, 5.8, and 8.0 micron photometry with broadband optical photometry and find that the optical data do not detect 43% and misidentify an additional 11% of the total AGB population, likely because of extinction caused by circumstellar material. Further, we find that a narrowband optical carbon star study of IC 1613 detects 50% of the total AGB population and only considers 18% of this population in calculating the carbon to M-type AGB ratio. We derive an integrated mass-loss rate from the AGB stars of 0.2-1.0 x 10^(-3) solar masses per year and find that the distribution of bolometric luminosities and mass-loss rates are consistent with those for other nearby metal-poor galaxies. Both the optical completeness fractions and mass-loss rates in IC 1613 are very similar to those in the Local Group dwarf irregular, WLM, which is expected given their similar characteristics and evolutionary histories.Comment: Accepted by ApJ, 26 pages, 10 figures, version with high-resolution figures available at: http://webusers.astro.umn.edu/~djackson

    Doping dependence and anisotropy of minority electron mobility in molecular beam epitaxy-grown p type GaInP

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1063/1.4902316Direct imaging of minority electron transport via the spatially resolved recombination luminescence signature has been used to determine carrier diffusion lengths in GaInP as a function of doping. Minority electron mobility values are determined by performing time resolved photoluminescence measurements of carrier lifetime on the same samples. Values at 300 K vary from~2000 to 400 cm2/V s and decrease with increasing doping. Anisotropic diffusion lengths and strongly polarized photoluminescence are observed, resulting from lateral composition modulation along the [110] direction. We report anisotropic mobility values associated with carrier transport parallel and perpendicular to the modulation direction.USDOEAC05-06OR23100DEAC36-08GO28308This work was supported at the Naval Postgraduate School in part by National Science Foundation Grant No. DMR-0804527 and in part by the NPS Energy Academic Group with funding from the Navy Energy Coordination Office. T.C. acknowledges support from the Department of Energy, Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under Control No. DE-AC05-06OR23100. TRPL work at NREL was supported by the Department of Energy Office of Science, Basic Energy Sciences under DEAC36-08GO28308

    Star Formation in Sculptor Group Dwarf Irregular Galaxies and the Nature of "Transition" Galaxies

    Full text link
    We present new H-alpha narrow band imaging of the HII regions in eight Sculptor Group dwarf irregular (dI) galaxies. Comparing the Sculptor Group dIs to the Local Group dIs, we find that the Sculptor Group dIs have, on average, lower values of SFR when normalized to either galaxy luminosity or gas mass (although there is considerable overlap between the two samples). The properties of ``transition'' (dSph/dIrr) galaxies in Sculptor and the Local Group are also compared and found to be similar. The transition galaxies are typically among the lowest luminosities of the gas rich dwarf galaxies. Relative to the dwarf irregular galaxies, the transition galaxies are found preferentially nearer to spiral galaxies, and are found nearer to the center of the mass distribution in the local cloud. While most of these systems are consistent with normal dI galaxies which currently exhibit temporarily interrupted star formation, the observed density-morphology relationship (which is weaker than that observed for the dwarf spheroidal galaxies) indicates that environmental processes such as ``tidal stirring'' may play a role in causing their lower SFRs.Comment: 35 pages, 10 figures, accepted for Feb 2003 AJ, companion to astro-ph/021117

    Silyl trifluoromethanesulfonate-activated para-methoxybenzyl methyl ether as an alkylating agent for thiols and aryl ketones

    Get PDF
    para-Methoxybenzyl methyl ether acts as an alkylating agent for thiols in the presence of trimethylsilyl trifluoromethanesulfonate and trialkylamine base in good yields (58-96%). Aryl ketones are alkylated under similar conditions, probably through an enol silane intermediate, also in high yields (67-95%). The active alkylating species is likely a p-methoxybenzyl cation
    • …
    corecore