6 research outputs found

    Propiedad Intelectual. Acciones desde CONFEDI

    Get PDF
    Fil: Filippi, Marcela Viviana. Universidad Nacional de Río Negro, Escuela de Producción, Tecnología y Medio Ambiente. Río Negro, Argentina.Fil: Carabelli, Francisco. Universidad Nacional de la Patagonia San Juan Bosco, Facultad de Ingeniería. Chubut, Argentina.Fil: Cuozzo, José D. Universidad de la Defensa Nacional, Facultad de Ingeniería. Buenos Aires, Argentina.Fil: Eterovic, Jorge. Universidad Nacional de la Matanza, Departamento de Ingeniería e Investigaciones Tecnológicas. Buenos Aires, Argentina.Fil: Revetria, Andrés H. Universidad de la Defensa Nacional, Facultad de Ingeniería del Ejército. Buenos Aires, Argentina.Fil: Cabrera, Miguel Universidad Nacional de Tucumán, Facultad de Ciencias Exactas y Tecnología. Tucuman, Argentina.Fil: Köhler, Alejandro. Universidad de la Defensa Nacional, Facultad de Ingeniería del Ejército. Buenos Aires, Argentina.The protection of intellectual rights, as well as the registrations of patents and utility models, have characterized industrialized countries in general. This protection has made it possible to grant, from an industrial / economic perspective and to promote the development of technology, a regulatory framework to protect rights, which in many cases originate with scientific developments in laboratories or research centers, to later lead to industrial designs or inventions of public utility.La protección de derechos intelectuales, así como los registros de patentes y modelos de utilidad, han caracterizado a los países industrializados en general. Esta protección ha permitido otorgar, desde una perspectiva indus trial/económica y de impulso al desarrollo de la tecnología, un marco regulatorio para resguardar derechos, que en muchos casos se originan con desarrollos científicos en laboratorios o centros de investigación, para desembocar luego en diseños industriales o inventos de utilidad pública

    Instrumentação para Educação Ambiental e a Prática Interdisciplinar

    Get PDF
    Material em formato .pdf -- Parte do material do curso de Especialização em Educação Ambiental com Ênfase em Espaços Educadores Sustentáveis– COMFOR – SEB – SECADI – MINISTÉRIO DA EDUCAÇÃOCoordenação pedagógica do curso: Coordenadora: Romilda Fernández Felisbino / Vice-Coordenadora: Sarah Isabel Pinto Monteiro do Nascimento AlvesEquipe de Produção - SEAD – UNIFESP -- Felipe Vieira Pacheco - Coordenador de Produção / Fábio Gongora Freire - Designer Instrucional / Margeci Leal de Freitas Alves - Designer Instrucional / Fabrício Sawczen - Designer Gráfico• Módulo 5: Instrumentação para Educação Ambiental e a Prática Interdisciplinar -- Este módulo aborda a formação de professores e a Educação Ambiental, englobando saberes ambientais e interdisciplinaridade, percepção ambiental, concepção e produção de material didático, didática e metodologia de ensino. Apresenta os principais problemas socioambientais em aspectos inter e transdisciplinares, e os desafios da Educação Ambiental a partir de tais concepções.Outr

    Can oil prices help estimate commodity futures prices? The cases of copper and silver

    No full text
    There is an extensive literature on modeling the stochastic process of commodity futures. It has been shown that models with several risk factors are able to adequately fit both the level and the volatility structure of observed transactions with reasonable low errors. One of the characteristics of commodity futures markets is the relatively short term maturity of their contracts, typically ranging for only a few years. This poses a problem for valuing long term investments that require extrapolating the observed term structure. There has been little work on how to effectively do this extrapolation and in measuring its errors. (Cortazar et al., 2008a) and (Cortazar et al., 2008b) propose a multicommodity model that jointly estimates two commodities, one with much longer maturity futures contracts than the other, showing that futures prices of one commodity may be useful information for estimating the stochastic process of another. They implement the procedure using highly correlated commodities like WTI and Brent. In this paper we analyze using prices of long term oil futures contracts to help estimate long term copper and silver future prices. We start by analyzing the performance of the (Cortazar et al., 2008a) and (Cortazar et al., 2008b) multicommodity model, now applied to oil-copper and oil-silver which have much lower correlation than the WTI-Brent contracts. We show that for these commodities with lower correlation the multicommodity model seems not to be effective. We then propose a modified multicommodity model with a much simpler structure which is easier to estimate and that uses the non-stationary long term process of oil to help estimate long term copper and silver futures prices, achieving a much better fit than using available individual or multicommodity models.Commodity futures Price estimation Copper Silver Oil

    Beneficios de la actividad física y el rendimiento académico

    No full text
    Tesis (Profesor de Educación Física para enseñanza General Básica, Licenciado en Educación)La motivación para realizar esta investigación, fue influenciada por el error común que presentan los padres que castigan a sus hijos con el deporte, cuando estos bajan su rendimiento de notas en otras asignaturas. Buscando que se concentren más en los estudios y mejoren sus notas. Pero lo que algunos padres no saben, es que el deporte, es un semblante positivo en la vida de los niños, el cual entrega un sinfín de beneficios como desarrollar habilidades motrices, actitudes propensas al juego limpio y liderazgo entre otros. Lo que genera toda esta situación, es contra producente, ya que los padres pretenden que los niños mejoren su rendimiento académico privándolos del deporte, pero resulta que la actividad física les brinda una activación cerebral generalizada, debido a que se necesita mantener en función y coordinación la totalidad de los sistemas. Por otro lado, Educación Física y Salud es una asignatura central de la educación escolar, que aporta en la formación integral de los estudiantes. La siguiente tesis de investigación trata sobre la relación entre el tiempo de actividad física y deportiva que realizan niños de sexto año básico con su promedio final de notas. Se creó y aplicó una encuesta de interés a dos colegios particulares pagados (Lincoln International Academy, Colegio Monte Tabor) y dos colegios particular subvencionado (Colegio San Viator y Colegio Elvira Hurtado de Matte). La encuesta fue conformada por seis preguntas en donde se buscó ver la correlación de la frecuencia en que realizan actividad física y deportiva los estudiantes de los respectivos colegios, sumando si asisten a talleres deportivos o clubes. Al obtener las respuestas se hizo un análisis de datos de los estudiantes y se realizó los cruces con la información obtenida, con los gráficos que se obtuvo por resultado se analizó la información y un orden de esta, facilitando el análisis, buscando encontrar las respuestas a nuestras interrogantes. Es importante destacar que el término “Salud” se debe a la preocupación del alto nivel de sedentarismo que enfrenta nuestro país. La Encuesta Nacional de Salud del 2010 muestra que un 88,6% de la población mayor de 17 años tiene un comportamiento sedentario, por otro lado el SIMCE de Educación Física aplicado el 2011 nos da a conocer que solo un 10% de los alumnos tiene una condición física satisfactoria, mientras que el 20% tiene riesgo a contraer enfermedades cardiovasculares y cardiorrespiratorias. Entonces nace la pregunta ¿Será beneficioso para el estudiante quitarle la práctica de actividad física como un castigo? Viendo estos niveles de sedentarismo y los riesgos que pueden tener los estudiantes no es una buena opción quitarles la oportunidad de mejorar su condición física y de tener opción a mejorar su calidad de vida por medio del ejercicio físico, según las respuestas de los estudiantes estos dedican muy pocas horas a la actividad física y es por esto que tenemos índices tan altos de sobrepeso en los niños

    A new class of plastic flow evolution equations for anisotropic multiplicative elastoplasticity based on the notion of a corrector elastic strain rate

    No full text
    [EN] We herein present a new continuum theory for both isotropic and anisotropic elastoplasticity at large strains. The new framework has the following properties: (1) It is valid for non-moderate large strains, (2) it is valid for both elastic and plastic anisotropy, (3) its description in rate form is parallel to that of the infinitesimal formulation, (4) it is compatible with the multiplicative decomposition, (5) results in a similar framework in any stress-strain work-conjugate pair, (6) it is consistent with the principle of maximum plastic dissipation and (7) does not impose any restriction on the plastic spin, which must be given as an independent constitutive equation. Furthermore, when formulated using logarithmic strain measures in the intermediate configuration: (8) it may be easily integrated using a classical backward-Euler rule resulting in an additive update. All these properties are obtained simply by considering a plastic evolution in terms of a corrector rate of the proper elastic strain. This new continuum theory is a natural framework for elastoplasticity of both metals and soft materials and solves the (so-coined by Simo) rate issue.Financial support for this work has been given by grants DPI2011-26635 and DPI2015-69801-R from the Direction General de Proyectos de Investigation of the Ministerio de Economia y Competitividad of Spain. FJM also acknowledges the support of the Department of Mechanical and Aerospace Engineering of University of Florida during the sabbatical period in which part this work was developed and that of the Ministerio de Education, Cultura y Deporte of Spain for the financial support for the sabbatical stay under grant PRX15/00065Latorre, M.; Montáns, FJ. (2018). A new class of plastic flow evolution equations for anisotropic multiplicative elastoplasticity based on the notion of a corrector elastic strain rate. Applied Mathematical Modelling. 55:716-740. https://doi.org/10.1016/j.apm.2017.11.0037167405

    Anisotropic finite strain viscoelasticity based on the Sidoroff multiplicative decomposition and logarithmic strains

    No full text
    [EN] In this paper a purely phenomenological formulation and finite element numerical implementation for quasi-incompressible transversely isotropic and orthotropic materials is presented. The stored energy is composed of distinct anisotropic equilibrated and non-equilibrated parts. The nonequilibrated strains are obtained from the multiplicative decomposition of the deformation gradient. The procedure can be considered as an extension of the Reese and Govindjee framework to anisotropic materials and reduces to such formulation for isotropic materials. The stress-point algorithmic implementation is based on an elastic-predictor viscous-corrector algorithm similar to that employed in plasticity. The consistent tangent moduli for the general anisotropic case are also derived. Numerical examples explain the procedure to obtain the material parameters, show the quadratic convergence of the algorithm and usefulness in multiaxial loading. One example also highlights the importance of prescribing a complete set of stress-strain curves in orthotropic materials.Partial financial support for this work has been given by grant DPI2011-26635 from the Direccion General de Proyectos de Investigacion of the Ministerio de Economia y Competitividad of SpainLatorre, M.; Montáns, FJ. (2015). Anisotropic finite strain viscoelasticity based on the Sidoroff multiplicative decomposition and logarithmic strains. Computational Mechanics. 56(3):506-531. https://doi.org/10.1007/s00466-015-1184-8506531563Cristensen RM (2003) Theory of viscoelasticity. Elsevier, DoverShaw MT, MacKnight WJ (2005) Introduction to polymer viscoelasticity. Wiley-Blackwell, New YorkArgon AS (2013) The physics of deformation and fracture of polymers. Cambridge University Press, CambridgeSchapery RA, Sun CT (eds) (2000) Time dependent and nonlinear effects in polymers and composites. American Society for Testing and Materials (ASTM), West ConshohockenGennisson JL, Deffieux T, Macé E, Montaldo G, Fink M, Tanter M (2010) Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound Med Biol 36(5):789–801Schapery RA (2000) Nonlinear viscoelastic solids. Int J Solids Struct 37(1):359–366Truesdell C, Noll W (2004) The non-linear field theories of mechanics. Springer, BerlinRivlin RS (1965) Nonlinear viscoelastic solids. SIAM Rev 7(3):323–340Fung YC (1993) A first course in continuum mechanics. Prentice-Hall, Upper Saddle RiverFung YC (1972) Stress–strain-history relations of soft tissues in simple elongation. Biomechanics 7:181–208Sauren AAHJ, Rousseau EPM (1983) A concise sensitivity analysis of the quasi-linear viscoelastic model proposed by Fung. J Biomech Eng 105(1):92–95Rebouah M, Chagnon G (2014) Extension of classical viscoelastic models in large deformation to anisotropy and stress softening. Int J Non-Linear Mech 61:54–64Poon H, Ahmad MF (1998) A material point time integration procedure for anisotropic, thermo rheologically simple, viscoelastic solids. Comput Mech 21(3):236–242Drapaca CS, Sivaloganathan S, Tenti G (2007) Nonlinear constitutive laws in viscoelasticity. Math Mech Solids 12(5):475–501Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New YorkHolzapfel GA (2000) Nonlinear solid mechanics. A continuum approach for engineering. Wiley, ChichesterPeña JA, Martínez MA, Peña E (2011) A formulation to model the nonlinear viscoelastic properties of the vascular tissue. Acta Mech 217(1–2):63–74Peña E, Peña JA, Doblaré M (2008) On modelling nonlinear viscoelastic effects in ligaments. J Biomech 41(12):2659–2666Holzapfel GA (1996) On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric structures. Int J Numer Methods Engrg 39(22):3903–3926Liefeith D, Kolling S (2007) An Anisotropic Material Model for Finite Rubber Viscoelasticity. LS-Dyna Anwenderforum, FrankenthalHaupt P (2002) Continuum mechanics and theory of materials, 2nd edn. Springer, BerlinBergström JS, Boyce MC (1998) Constitutive modeling of the large strain time-dependent behavior of elastomers. J Mech Phys Solids 46(5):931–954Le Tallec P, Rahier C, Kaiss A (1993) Three-dimensional incompressible viscoelasticity in large strains: formulation and numerical approximation. Comput Methods Appl Mech Eng 109:233–258Haupt P, Sedlan K (2001) Viscoplasticity of elastomeric materials: experimental facts and constitutive modelling. Arch Appl Mech 71:89–109Lion A (1996) A constitutive model for carbon black filled rubber: experimental investigations and mathematical representation. Contin Mech Thermodyn 8(3):153–169Lion A (1998) Thixotropic behaviour of rubber under dynamic loading histories: experiments and theory. J Mech Phys Solids 46(5):895–930Simo JC (1987) On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput Methods Appl Mech Eng 60(2):153–173Craiem D, Rojo FJ, Atienza JM, Armentano RL, Guinea GV (2008) Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries. Phys Med Biol 53:4543–4554Kaliske M, Rothert H (1997) Formulation and implementation of three-dimensional viscoelasticity at small and finite strains. Comput Mech 19(3):228–239Gasser TC, Forsell C (2011) The numerical implementation of invariant-based viscoelastic formulations at finite strains. An anisotropic model for the passive myocardium. Comput Methods Appl Mech Eng 200(49):3637–3645Reese S, Govindjee S (1998) A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct 35(26):3455–3482Lubliner J (1985) A model of rubber viscoelasticity. Mech Res Commun 12(2):93–99Sidoroff F (1974) Un modèle viscoélastique non linéaire avec configuration intermédiaire. J Mécanique 13(4):679–713Lee EH (1969) Elastic-plastic deformation at finite strains. J Appl Mech 36(1):1–6Bilby BA, Bullough R, Smith E (1955) Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry. Proc R Soc Lond Ser A 231(1185):263–273Herrmann LR, Peterson FE (1968) A numerical procedure for viscoelastic stress analysis. In: Seventh meeting of ICRPG mechanical behavior working group, Orlando, FL, CPIA Publication, vol 177, pp 60–69Taylor RL, Pister KS, Goudreau Gl et al (1970) Thermomechanical analysis of viscoelastic solids. Int J Numer Methods Eng 2(1):45–59Hartmann S (2002) Computation in finite-strain viscoelasticity: finite elements based on the interpretation as differential-algebraic equations. Comput Methods Appl Mech Eng 191(13–14):1439–1470Eidel B, Kuhn C (2011) Order reduction in computational inelasticity: why it happens and how to overcome it–The ODE-case of viscoelasticity. Int J Numer Methods Eng 87(11):1046–1073Haslach HW Jr (2005) Nonlinear viscoelastic, thermodynamically consistent, models for biological soft tissue. Biomech Model Mechanobiol 3(3):172–189Pioletti DP, Rakotomanana LR, Benvenuti JF, Leyvraz PF (1998) Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons. J Biomech 31(8):753–757Merodio J, Goicolea JM (2007) On thermodynamically consistent constitutive equations for fiber-reinforced nonlinearly viscoelastic solids with application to biomechanics. Mech Res Commun 34(7):561–571Bonet J (2001) Large strain viscoelastic constitutive models. Int J Solids Struct 38(17):2953–2968Peric D, Dettmer W (2003) A computational model for generalized inelastic materials at finite strains combining elastic, viscoelastic and plastic material behaviour. Eng Comput 20(5/6):768–787Nedjar B (2002) Frameworks for finite strain viscoelastic-plasticity based on multiplicative decompositions. Part I: continuum formulations. Comput Methods Appl Mech Eng 191(15):1541–1562Latorre M, Montáns FJ (2014) On the interpretation of the logarithmic strain tensor in an arbitrary system of representation. Int J Solids Struct 51(7):1507–1515Eterovic AL, Bathe KJ (1990) A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures. Int J Numer Methods Eng 30(6):1099–1114Simo JC (1992) Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comput Methods Appl Mech Eng 99(1):61–112Caminero MA, Montáns FJ, Bathe KJ (2011) Modeling large strain anisotropic elasto-plasticity with logarithmic strain and stress measures. Comput Struct 89(11):826–843Montáns FJ, Benítez JM, Caminero MA (2012) A large strain anisotropic elastoplastic continuum theory for nonlinear kinematic hardening and texture evolution. Mech Res Commun 43:50–56Papadopoulos P, Lu J (2001) On the formulation and numerical solution of problems in anisotropic finite plasticity. Comput Meth Appl Mech Eng 190(37):4889–4910Miehe C, Apel N, Lambrecht M (2002) Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials. Comput Meth Appl Mech Eng 191(47):5383–5425Vogel F, Göktepe S, Steinmann P, Kuhl E (2014) Modeling and simulation of viscous electro-active polymers. Eur J Mech 48:112–128Holmes DW, Loughran JG (2010) Numerical aspects associated with the implementation of a finite strain, elasto-viscoelastic-viscoplastic constitutive theory in principal stretches. Int J Numer Methods Eng 83(3):366–402Holzapfel GA, Gasser TC, Stadler M (2002) A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur J Mech 21(3):441–463Nguyen TD, Jones RE, Boyce BL (2007) Modeling the anisotropic finite-deformation viscoelastic behavior of soft fiber-reinforced composites. Int J Solids Struct 44(25):8366–8389Nedjar B (2007) An anisotropic viscoelastic fibre-matrix model at finite strains: continuum formulation and computational aspects. Comput Methods Appl Mech Eng 196(9):1745–1756Latorre M, Montáns FJ (2013) Extension of the Sussman-Bathe spline-based hyperelastic model to incompressible transversely isotropic materials. Comput Struct 122:13–26Latorre M, Montáns FJ (2014) What-you-prescribe-is-what-you-get orthotropic hyperelasticity. Comput Mech 53(6):1279–1298Latorre M, Montáns FJ (2015) Material-symmetries congruency in transversely isotropic and orthotropic hyperelastic materials. Eur J Mech 53:99–106Miñano M, Montáns FJ (2015) A new approach to modeling isotropic damage for Mullins effect in hyperelastic materials. Int J Solids Struct 67–68:272–282Montáns FJ, Bathe KJ (2005) Computational issues in large strain elasto-plasticity: an algorithm for mixed hardening and plastic spin. Int J Numer Methods Eng 63(2):159–196Montáns FJ, Bathe KJ (2007) Towards a model for large strain anisotropic elasto-plasticity. Computational plasticity. Springer, New York, pp 13–36Bathe KJ (2014) Finite element procedures, 2nd edn. Klaus-Jurgen Bathe, BerlinWeber G, Anand L (1990) Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids. Comput Methods Appl Mech Eng 79(2):173–202Hartmann S, Quint KJ, Arnold M (2008) On plastic incompressibility within time-adaptive finite elements combined with projection techniques. Comput Methods Appl Mech Eng 198:178–193Simo JC, Miehe C (1992) Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Comput Methods Appl Mech Eng 98(1):41–104Sansour C, Bocko J (2003) On the numerical implications of multiplicative inelasticity with an anisotropic elastic constitutive law. Int J Numer Methods Eng 58(14):2131–2160Bischoff JE, Arruda EM, Grosh K (2004) A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue. Biomech Model Mechanobiol 3(1):56–65Sussman T, Bathe KJ (2009) A model of incompressible isotropic hyperelastic material behavior using spline interpolations of tension-compression test data. Commun Numer Methods Eng 25:53–63Sussman T, Bathe KJ (1987) A finite element formulation for nonlinear incompressible elastic and inelastic analysis. Comput Struct 26:357–409Ogden RW (1997) Nonlinear elastic deformations. Dover, New YorkKim DN, Montáns FJ, Bathe KJ (2009) Insight into a model for large strain anisotropic elasto-plasticity. Comput Mech 44(5):651–66
    corecore