6 research outputs found

    Rates and Predictors of Treatment Failure in Staphylococcus aureus Prosthetic Joint Infections According to Different Management Strategies: A Multinational Cohort Study—The ARTHR-IS Study Group

    Full text link
    Introduction: Guidelines have improved the management of prosthetic joint infections (PJI). However, it is necessary to reassess the incidence and risk factors for treatment failure (TF) of Staphylococcus aureus PJI (SA-PJI) including functional loss, which has so far been neglected as an outcome. Methods: A retrospective cohort study of SA-PJI was performed in 19 European hospitals between 2014 and 2016. The outcome variable was TF, including related mortality, clinical failure and functional loss both after the initial surgical procedure and after all procedures at 18 months. Predictors of TF were identified by logistic regression. Landmark analysis was used to avoid immortal time bias with rifampicin when debridement, antibiotics and implant retention (DAIR) was performed. Results: One hundred twenty cases of SA-PJI were included. TF rates after the first and all surgical procedures performed were 32.8% and 24.2%, respectively. After all procedures, functional loss was 6.0% for DAIR and 17.2% for prosthesis removal. Variables independently associated with TF for the first procedure were Charlson >= 2, haemoglobin 30 kg/m(2) and delay of DAIR, while rifampicin use was protective. For all procedures, the variables associated with TF were haemoglobin < 10 g/dL, hip fracture and additional joint surgery not related to persistent infection. Conclusions: TF remains common in SA-PJI. Functional loss accounted for a substantial proportion of treatment failures, particularly after prosthesis removal. Use of rifampicin after DAIR was associated with a protective effect. Among the risk factors identified, anaemia and obesity have not frequently been reported in previous studies. [GRAPHICS]

    The water channel aquaporin 8 is a critical regulator of intestinal fluid homeostasis in collagenous colitis

    No full text
    Background and Aims: Diarrhoea is a common, debilitating symptom of gastrointestinal disorders. Pathomechanisms probably involve defects in trans-epithelial water transport, but the role of aquaporin [AQP] family water channels in diarrhoea-predominant diseases is unknown. We investigated the involvement of AQPs in the pathobiology of collagenous colitis [CC], which features chronic, watery diarrhoea despite overtly normal intestinal epithelial cells [IECs]. Methods: We assessed the expression of all AQP family members in mucosal samples of CC patients before and during treatment with the corticosteroid drug budesonide, steroid-refractory CC patients and healthy controls. Samples were analysed by genome-wide mRNA sequencing [RNAseq] and quantitative real-time PCR [qPCR]. In some patients, we performed tissue microdissection followed by RNA-seq to explore the IEC-specific CC transcriptome. We determined changes in the protein levels of the lead candidates in IEC by confocal microscopy. Finally, we investigated the regulation of AQP expression by corticosteroids in model cell lines. Results: Using qPCR and RNA-seq, we identified loss of AQP8 expression as a hallmark of active CC, which was reverted by budesonide treatment in steroid-responsive but not refractory patients. Consistently, decreased AQP8 mRNA and protein levels were observed in IECs of patients with active CC, and steroid drugs increased AQP8 expression in model IECs. Moreover, low APQ8 expression was strongly associated with higher stool frequency in CC patients. Conclusion: Down-regulation of epithelial AQP8 may impair water resorption in active CC, resulting in watery diarrhoea. Our results suggest that AQP8 is a potential drug target for the treatment of diarrhoeal disorders

    Monitoring the Phenolic Ripening of Red Grapes Using a Multisensor System Based on Metal-Oxide Nanoparticles

    No full text
    The maturity of grapes is usually monitored by means of the sugar concentration. However, the assessment of other parameters such as the phenolic content is also important because the phenolic maturity has an important impact on the organoleptic characteristics of wines. In this work, voltammetric sensors able to detect phenols in red grapes have been developed. They are based on metal oxide nanoparticles (CeO2, NiO, and TiO2,) whose excellent electrocatalytic properties toward phenols allows obtaining sensors with detection limits in the range of 10−8 M and coefficients of variation lower than 7%. An electronic tongue constructed using a combination of the nanoparticle-based sensors is capable to monitor the phenolic maturity of red grapes from véraison to maturity. Principal Component Analysis (PCA) can be successfully used to discriminate samples according to the ripeness. Regression models performed using Partial Least Squares (PLS-1) have established good correlations between voltammetric data obtained with the electrochemical sensors and the Total Polyphenolic Index, the Brix degree and the Total Acidity, with correlation coefficients close to 1 and low number of latent variables. An advantage of this system is that the electronic tongue can be used for the simultaneous assessment of these three parameters which are the main factors used to monitor the maturity of grapes. Thus the electronic tongue based on metal oxide nanoparticles can be a valuable tool to monitor ripeness. These results demonstrate the exciting possible applications of metal oxide nanoparticles in the field of electronic tongues

    Table_1_Monitoring the Phenolic Ripening of Red Grapes Using a Multisensor System Based on Metal-Oxide Nanoparticles.docx

    No full text
    <p>The maturity of grapes is usually monitored by means of the sugar concentration. However, the assessment of other parameters such as the phenolic content is also important because the phenolic maturity has an important impact on the organoleptic characteristics of wines. In this work, voltammetric sensors able to detect phenols in red grapes have been developed. They are based on metal oxide nanoparticles (CeO<sub>2</sub>, NiO, and TiO<sub>2</sub>,) whose excellent electrocatalytic properties toward phenols allows obtaining sensors with detection limits in the range of 10<sup>−8</sup> M and coefficients of variation lower than 7%. An electronic tongue constructed using a combination of the nanoparticle-based sensors is capable to monitor the phenolic maturity of red grapes from véraison to maturity. Principal Component Analysis (PCA) can be successfully used to discriminate samples according to the ripeness. Regression models performed using Partial Least Squares (PLS-1) have established good correlations between voltammetric data obtained with the electrochemical sensors and the Total Polyphenolic Index, the Brix degree and the Total Acidity, with correlation coefficients close to 1 and low number of latent variables. An advantage of this system is that the electronic tongue can be used for the simultaneous assessment of these three parameters which are the main factors used to monitor the maturity of grapes. Thus the electronic tongue based on metal oxide nanoparticles can be a valuable tool to monitor ripeness. These results demonstrate the exciting possible applications of metal oxide nanoparticles in the field of electronic tongues.</p

    International Nosocomial Infection Control Consortiu (INICC) report, data summary of 43 countries for 2007-2012. Device-associated module

    No full text
    We report the results of an International Nosocomial Infection Control Consortium (INICC) surveillance study from January 2007-December 2012 in 503 intensive care units (ICUs) in Latin America, Asia, Africa, and Europe. During the 6-year study using the Centers for Disease Control and Prevention's (CDC) U.S. National Healthcare Safety Network (NHSN) definitions for device-associated health care–associated infection (DA-HAI), we collected prospective data from 605,310 patients hospitalized in the INICC's ICUs for an aggregate of 3,338,396 days. Although device utilization in the INICC's ICUs was similar to that reported from ICUs in the U.S. in the CDC's NHSN, rates of device-associated nosocomial infection were higher in the ICUs of the INICC hospitals: the pooled rate of central line–associated bloodstream infection in the INICC's ICUs, 4.9 per 1,000 central line days, is nearly 5-fold higher than the 0.9 per 1,000 central line days reported from comparable U.S. ICUs. The overall rate of ventilator-associated pneumonia was also higher (16.8 vs 1.1 per 1,000 ventilator days) as was the rate of catheter-associated urinary tract infection (5.5 vs 1.3 per 1,000 catheter days). Frequencies of resistance of Pseudomonas isolates to amikacin (42.8% vs 10%) and imipenem (42.4% vs 26.1%) and Klebsiella pneumoniae isolates to ceftazidime (71.2% vs 28.8%) and imipenem (19.6% vs 12.8%) were also higher in the INICC's ICUs compared with the ICUs of the CDC's NHSN

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore