3 research outputs found

    The disruption of mitochondrial axonal transport is an early event in neuroinflammation

    Get PDF
    Background: in brain inflammatory diseases, axonal damage is one of the most critical steps in the cascade that leads to permanent disability. Thus, identifying the initial events triggered by inflammation or oxidative stress that provoke axonal damage is critical for the development of neuroprotective therapies. Energy depletion due to mitochondrial dysfunction has been postulated as an important step in the damage of axons. This prompted us to study the effects of acute inflammation and oxidative stress on the morphology, transport, and function of mitochondria in axons. Methods: mouse cerebellar slice cultures were challenged with either lipopolysaccharide (LPS) or hydrogen peroxide (H2O2) ex vivo for 24 h. Axonal mitochondrial morphology was evaluated by transmission electron microscopy (TEM) and mitochondrial transportation by time-lapse imaging. In addition, mitochondrial function in the cerebellar slice cultures was analyzed through high-resolution respirometry assays and quantification of adenosine triphosphate (ATP) production. Results: both conditions promoted an increase in the size and complexity of axonal itochondria evident in electron microscopy images, suggesting a compensatory response. Such compensation was reflected at the tissue level as increased respiratory activity of complexes I and IV and as a transient increase in ATP production in response to acute inflammation. Notably, time-lapse microscopy indicated that mitochondrial transport (mean velocity) was severely impaired in axons, increasing the proportion of stationary mitochondria in axons after LPS challenge. Indeed, the two challenges used produced different effects: inflammation mostly reducing retrograde transport and oxidative stress slightly enhancing retrograde transportation. Conclusions: neuroinflammation acutely impairs axonal mitochondrial transportation, which would promote an inappropriate delivery of energy throughout axons and, by this way, contribute to axonal damage. Thus, preserving axonal mitochondrial transport might represent a promising avenue to exploit as a therapeutic target for neuroprotection in brain inflammatory diseases like multiple sclerosis

    Mecanismos de degeneraci贸n axonal en neuroinflamaci贸n: papel de la disfunci贸n mitocondrial

    Get PDF
    [spa] La Esclerosis M煤ltiple (EM) afecta preferentemente a la conectividad cerebral lesionando los axones de forma irreversible, siendo esta lesi贸n la principal causa de la discapacidad permanente de los pacientes. El da帽o axonal se produce de forma aguda debido a la cascada inflamatoria y de forma cr贸nica (degenerativa) debido a la falta de soporte tr贸fico de la mielina, un microambiente alterado (gli贸tico) y persistencia de inflamaci贸n cr贸nica (activaci贸n microglial). Los axones son da帽ados en la fase aguda por el estr茅s oxidativo y energ茅tico y mecanismos de citotoxicidad, produci茅ndose un fallo del transporte axonal y un fallo de la funci贸n mitocondrial. Todos estos procesos culminan en el d茅ficit energ茅tico, que pone en marcha mecanismos activos de transecci贸n axonal que llevan a la lesi贸n axonal aguda. Los mecanismos de da帽o axonal cr贸nico ser铆an en parte similares a los agudos (d茅ficit energ茅tico) extendidos en el tiempo, junto con el fallo de soporte tr贸fico de la mielina, la modificaci贸n de la funci贸n y distribuci贸n de los canales i贸nicos y la consecuente alteraci贸n del microambiente. Identificar los mecanismos y la din谩mica del da帽o axonal agudo y cr贸nico en la EM permitir谩 identificar dianas terap茅uticas para las que se desarrollar铆an nuevas terapias neuroprotectoras que disminur铆an el da帽o axonal en la EM y por tanto las secuelas. El objetivo del proyecto es analizar distintos aspectos de la biolog铆a mitocondrial y de su funci贸n respiratoria y energ茅tica relacionados con la degeneraci贸n axonal en un entorno neuroinflamatorio agudo. Para conseguirlo se ha utilizado un modelo de neuroinflamaci贸n in vitro consistente en cultivos organot铆picos de cerebelo de rat贸n estimulados con lipopolisac谩rido bacteriano (LPS) y los cambios se han evaluado mediante t茅cnicas de microscop铆a avanzada y biolog铆a molecular. A lo largo del estudio de la biolog铆a mitocondrial tambi茅n se ha utilizado un est铆mulo causante de estr茅s oxidativo, el per贸xido de hidr贸geno (H2O2), proceso que forma parte de la neuroinflamaci贸n y afecta directamente a la funci贸n de los complejos de la cadena respiratoria mitocondrial. Los resultados del estudio nos llevan a proponer el siguiente modelo de la respuesta mitocondrial en un entorno neuroinflamatorio agudo: mientras que a nivel tisular las mitocondrias responden aumentando su capacidad respiratoria y la producci贸n de ATP, a nivel axonal las mitocondrias responden morfol贸gicamente a la inflamaci贸n aumentando su tama帽o y la complejidad de sus crestas mitocondriales, pero su transporte se ve completamente alterado. La paralizaci贸n de las mitocondrias se produce en una etapa temprana y aguda de la inflamaci贸n, antes de que los da帽os axonales sean irreversibles. Por tanto, nuestro modelo indica que el mecanismo m谩s cr铆tico en la disfunci贸n mitocondrial en la neuroinflamaci贸n aguda es la alteraci贸n del transporte axonal de mitocondrias (especialmente el retr贸grado). Por tanto, nuestro estudio sugiere la preservaci贸n del transporte mitocondrial como una diana terap茅utica de neuroprotecci贸n en lesiones agudas de EM.[eng] The main cause of permanent disability in Multiple Sclerosis (MS) patients is axonal degeneration. In acute phases of the disease axonal damage is a consequence of the inflammatory cascade and oxidative stress that cause direct damage to mitochondria, inhibiting OXPHOS complexes. In more chronic phases axonal degeneration is due to loss of myelin trophic support, gliosis, redistribution of axonal sodium channels and extended energetic deficiency. Mitochondrial dysfunction is a common player in both stages. Therefore, the elucidation of axonal degeneration mechanisms is important for the identification of new therapeutic targets and the development of neuroprotective therapies that decrease axonal damage in MS. The objective of the project is to analyze different aspects of mitochondrial biology and their respiratory and energetic functions related with axonal degeneration in an acute neuroinflammatory environment. Organotypic slice cultures of mouse cerebellum were stimulated with LPS to activate microglia and simulate neuroinflammation, and mitochondrial changes were evaluated with advanced techniques of molecular biology and microscopy. The results suggest that tissular mitochondria are responding to acute neuroinflammation increasing their respiratory capacity and their production of ATP, and axonal mitochondria react morphologically increasing their size and their cristae complexity. However, axonal mitochondrial transport is completely impaired, in an early stage of acute inflammation before axonal damage is irreversible. Therefore, we propose that the critical mechanism of mitochondrial dysfunction in acute neuroinflammation is the impairment of axonal mitochondrial transport. As a result, the preservation of axonal mitochondrial transport represents a therapeutic target for neuroprotection in acute MS lesions

    The disruption of mitochondrial axonal transport is an early event in neuroinflammation

    No full text
    Background: in brain inflammatory diseases, axonal damage is one of the most critical steps in the cascade that leads to permanent disability. Thus, identifying the initial events triggered by inflammation or oxidative stress that provoke axonal damage is critical for the development of neuroprotective therapies. Energy depletion due to mitochondrial dysfunction has been postulated as an important step in the damage of axons. This prompted us to study the effects of acute inflammation and oxidative stress on the morphology, transport, and function of mitochondria in axons. Methods: mouse cerebellar slice cultures were challenged with either lipopolysaccharide (LPS) or hydrogen peroxide (H2O2) ex vivo for 24 h. Axonal mitochondrial morphology was evaluated by transmission electron microscopy (TEM) and mitochondrial transportation by time-lapse imaging. In addition, mitochondrial function in the cerebellar slice cultures was analyzed through high-resolution respirometry assays and quantification of adenosine triphosphate (ATP) production. Results: both conditions promoted an increase in the size and complexity of axonal itochondria evident in electron microscopy images, suggesting a compensatory response. Such compensation was reflected at the tissue level as increased respiratory activity of complexes I and IV and as a transient increase in ATP production in response to acute inflammation. Notably, time-lapse microscopy indicated that mitochondrial transport (mean velocity) was severely impaired in axons, increasing the proportion of stationary mitochondria in axons after LPS challenge. Indeed, the two challenges used produced different effects: inflammation mostly reducing retrograde transport and oxidative stress slightly enhancing retrograde transportation. Conclusions: neuroinflammation acutely impairs axonal mitochondrial transportation, which would promote an inappropriate delivery of energy throughout axons and, by this way, contribute to axonal damage. Thus, preserving axonal mitochondrial transport might represent a promising avenue to exploit as a therapeutic target for neuroprotection in brain inflammatory diseases like multiple sclerosis
    corecore