2,558 research outputs found

    Impacts of Agricultural Nutrient Regulation in a Heterogeneous Region

    Get PDF
    Nonpoint sources of water pollutants, in particular, nutrients like nitrogen and phosphorus, are increasingly a focus of US water pollution policy. In most cases, agriculture is the largest contributor of these pollutants, in part because, until recently, it has largely remained unregulated. Recently, however, a number of initiatives have targeted nutrient runoff and leaching from animal agriculture. Many states have promulgated new nutrient management regulations stipulating that manure be disposed of in ways that limit runoff and leaching to acceptably low levels. Stricter state regulations have been especially common in the Mid-Atlantic and Southeast, where excess nutrients have proven particularly problematic (Gollehon et al.). In 2003, the US Environmental Protection Agency updated its regulatory oversight of confined animal feeding operations. The new regulations apply to a larger subset of such operations than in the past, most notably large poultry producers. In addition, they require all such operations to create and implement nutrient management plans that restrict land application of manure such that the quantity of nutrients a crop needs are correlated with the amount of nutrients applied to the crop. Several studies have examined the economics of nutrient management regulations. Fleming et al. assess the profitability of land application of swine manure for a single operation using data from Iowa. Innes presents a theoretical analysis for manure application in a region in cases where manure may be subject to both leaching and catastrophic spills into nearby water bodies in extreme weather events. Goetz and Zilberman present a theoretical analysis of optimal manure application and pollution taxes in a spatially differentiated region where phosphorus runoff is a stock pollutant. Feinerman et al. analyze least-cost combinations of manure and chemical fertilizer use at a regional level under nitrogen- and phosphorus-based nutrient management plans in the case of a linear-with-plateau von Liebig production technology both theoretically and empirically using data from Virginia. All of the aforementioned studies, except Goetz and Zilberman, assume that land is homogeneous in terms of its potential for nutrient runoff and leaching. In most cases, however, there is substantial heterogeneity in pollution potential due to differences in such factors as proximity to water bodies, soils, topography, phosphorus status, and BMP implementation. In many parts of the US, for instance, nutrient management regulations are based explicitly on the phosphorus site index (PSI), which incorporates information about soil phosphorus levels, leaching potential, and indicators of potential environmental damage. This paper examines the impacts of nutrient management regulations in a heterogeneous region. We extend existing frameworks in several ways that are critical from the perspective of practical regulation. First, both nitrogen and phosphorus are potential sources of water quality degradation; thus, nutrient management regulation needs to take both nutrients into account. Second, manure contributes to stocks of nutrients held in soils and nutrients are released only gradually, i.e., carryover is significant. As noted above for the case of phosphorus, nutrient management regulations are often conditioned on these soil stocks. Third, land heterogeneity determines nutrient application rates as well as runoff and leaching rates. Fourth, the use of manure can involve extra application costs and, in some instances, significant costs of transportation to suitable sites. Fifth, manure may have other uses than application to cropland, e.g., composting, pelletization for export, energy production, and forest fertilization. We develop a theoretical model of optimal manure application and chemical fertilizer use that incorporates all of these elements. Returns to crop production are modeled as a general function of nitrogen and phosphorus uptake. Available nitrogen is modeled as the sum of chemical fertilizer input plus releases from a stock of soil organic matter less land-type-specific losses to leaching and runoff. Changes in soil stocks of organic matter are assumed to equal additions from manure less releases to available nitrogen. Changes in soil phosphorus stocks are equal to additions from manure less crop uptake and losses to the environment at rates that depend on land type and existing stock levels. All soil phosphorus is assumed to be bioavailable. Environmental damage is assumed to depend on aggregate losses of nitrogen and phosphorus to the environment. We use the model to derive field- (land-type-) specific nutrient management recommendations for both manure application and chemical fertilizer use. We distinguish conditions under which nutrient management leads to (a) reliance on chemical fertilizer only, (b) reliance on manure application only, and (c) simultaneous use of chemical fertilizer and manure. We discuss the evolution of those recommendations over time as manure nutrient levels change due to alterations in feed, and as soil phosphorus and organic matter stocks change. We also discuss steady state recommendations. We apply the model empirically to the case of the Delmarva Peninsula, where regulators in Maryland and Delaware have introduced strict nutrient management regulations to address problems of phosphorus and nitrogen runoff into the Chesapeake Bay, with an emphasis on the management of poultry litter. This region has been identified as having large excesses of nitrogen and phosphorus relative to assimilative capacity, suggesting a need for long-distance export of much of the region's poultry litter (Gollehon et al.). We combine PSI estimates derived from soil test data with agronomic information on crop uptake rates to derive land-type-specific nutrient application rates under nitrogen- and phosphorus-based nutrient management regulations. We use a spatial model to estimate poultry litter transportation costs. We use engineering and agronomic studies to estimate demand for poultry litter in uses other than land application; they indicate that land application is likely the highest value use. In contrast to Gollehon et al., our results suggest a minimal need for long-distance transport under nutrient management regulations intended to limit leaching and runoff. The distribution of pollution potential is highly skewed: There is a small amount of land with extremely high PSI while most land has very low PSI. As a result, estimates based on county-level averages are highly misleading. In the short run, export from the Peninsula is not needed; in a steady state, some export may be needed. Overall, the impact of strict nutrient management regulations in this region will depend on the acceptability of land application of poultry litter to lands that are currently only using commercial fertilizer. Keeping those impacts low depends on the success of educational programs that promote poultry litter use (predominantly nutrient management programs) and on the creation of marketing institutions that minimize transaction costs of manure marketing.Environmental Economics and Policy,

    Neal Ambrose-Smith: The Artistic Modernity of Indianness

    Get PDF
    Neal Ambrose-Smith is an artist of Cree, Metis, and Salish heritage who is at the forefront of contemporary Native American art. A thorough examination of Ambrose-Smiths body of work will reveal that the majority of his art can be viewed as having overwhelming intentions toward a dissolution of boundaries separating the ideas of \u27Native,\u27 \u27contemporary,\u27 and \u27Western art.\u27 It also will show that through the utilization of popular culture and its icons, Ambrose-Smith is able to build a rapport with audiences, while also using images and themes in his art to help break down barriers that contemporary Native artists face in modern society.\u2

    A Fast and Accurate Nonlinear Spectral Method for Image Recognition and Registration

    Full text link
    This article addresses the problem of two- and higher dimensional pattern matching, i.e. the identification of instances of a template within a larger signal space, which is a form of registration. Unlike traditional correlation, we aim at obtaining more selective matchings by considering more strict comparisons of gray-level intensity. In order to achieve fast matching, a nonlinear thresholded version of the fast Fourier transform is applied to a gray-level decomposition of the original 2D image. The potential of the method is substantiated with respect to real data involving the selective identification of neuronal cell bodies in gray-level images.Comment: 4 pages, 3 figure

    RIDE: A Mixed-Mode Control Interface for Mobile Robot Teams

    Get PDF
    There is a growing need for robot control interfaces that allow a single user to effectively control a large number of mostly-autonomous robots. The challenges in controlling such a collection of robots are very similar to the challenges of controlling characters in some genres of video games. In this paper, we argue that interfaces based on elements from computer video games are effective tools for the control of large robot teams. We present RIDE, the Robot Interactive Display Environment, an example of such an interface, and give the results of initial user studies with the interface, which lend support to our claim

    THE EVOLUTIONARY ECOLOGY OF HOST-MICROBIOME SYMBIOSIS IN ONTHOPHAGUS DUNG BEETLES

    Get PDF
    Dissertation (Ph.D.) - Indiana University, Biology, 2021The effect of host-microbe interactions on diverse aspects of host biology are increasingly appreciated across biological disciplines, yet the roles played by these interactions in shaping host evolution remain poorly understood. My dissertation research seeks to address these and related issues using the dung beetle genus Onthophagus. Previous work in this genus has demonstrated that mothers reliably pass to their offspring a conserved group of gut microbes, and that these vertically inherited microbes enhance offspring growth, development, and survival, especially under stress. In the first three chapters of my dissertation, I employed a manipulative method which allowed for the exchange of gut microbiota between Onthophagus species. Using this technique, I was able to first show that different species have diverged to make use of non-interchangeable gut microbiota, and that disruption of these specific host-microbiota relationships has potentially long-term evolutionary consequences. Secondly, I then showed that this host-microbiota species specificity can arise over evolutionarily short timespans, including recently divergent, broadly sympatric and often syntopic sister species sharing virtually identical ecologies. In my third chapter, I was able to show that Onthophagusmicrobiota may influence population adaptation to local thermal conditions. However, contrary to my original hypotheses, results suggested that local host microbiome interactions may limit, rather than enhance, host fitness. Finally, in my fourth chapter, I employed a microbial sequencing approach to provide an in-depth assessment of the taxonomic composition of the gut microbiota of several dung beetle species, and to determine to what extent microbiome composition changes when hosts are introduced to novel geographic ranges. As a whole, my dissertation employs a diversity of methodologies to better understand the evolutionary and ecological ramifications of dung beetle microbiome symbioses

    IMMUNOHISTOCHEMISTRY EXPRESSION OF KLOTHO IN BONE MARROW BIOPSIES FROM NORMAL, MGUS, AND PLASMA CELL MYELOMA

    Get PDF
    poster abstractKlotho is an anti-aging gene, which has been shown to inhibit the insulin and insulin-like growth factor 1 (IGF-1) pathways in mice hepatocytes and myocytes. Immunochemistry analysis of Klotho expression in breast tissue arrays revealed high expression in normal breast, but very low expression in breast cancer. In this study we examined eight normal bone marrow, eight MGUS (monoclonal gammopathy of undetermined significance), and forty-two cases of plasma cell myeloma by immunohistochemistry with the Klotho antibody. The immunostaining of the Klotho antibody was localized in the cyto-plasm and as punctate granular staining of myeloma cells in the marrow. In the accompanying bone marrow clots, Klotho was seen as strong punctate granules on myeloma cells and not on other peripheral white blood cells. There was no staining of plasma cells in the eight normal bone marrow cas-es. Slight cytoplasmic staining was seen in myeloid series of cells in the normal bone marrow and in megakaryocytes. In the eight MGUS cases, there was very minimal cytoplasmic staining in a few of the myeloma cells. Minimal staining was seen in the myeloid series of cells in the marrow in these cases. Klotho was highly expressed in the myeloma cases and no staining in the normal and MGUS cases. In conclusion, Klotho was highly expressed in patients with myeloma in myelomas cells in the bone marrow. This project was sponsored by the Life Health Science Internship Progra

    Does it Matter Who Writes Your Nutrient Management Plan?

    Get PDF
    Dr. Erik Lichtenberg and Dr. Doug Parker of the University of Maryland, along with Dr. Chad Lawley of the University of Manitoba, studied the content of nutrient management plans written before they were required by law to see if that content varied according to the type of provider

    Local Coordination Environments and Vibrational Dynamics of Protons in Hexagonal and Cubic Sc-Doped BaTiO3 Proton-Conducting Oxides

    Get PDF
    The proton local coordination environments and vibrational dynamics associated with the two order of magnitude change in proton conductivity in hydrated forms of hexagonal and cubic structured BaTi1-xScxO3Hx (0.16 < x < 0.7) were investigated using optical spectroscopy, neutron spectroscopy, and first-principles calculations. Whereas the cubic structure compositions display a single proton site, we show that protons occupy three distinct sites in compositions exhibiting the hexagonal structure. The principal site is characterized by interoctahedral hydrogen bonds, while two additional low occupancy sites are similar to those in the cubic structure, with classic intraoctahedral geometry. Furthermore, the proton hydrogen bond strength increases with decreasing scandium doping level. We infer from this that the stronger, more energetic hydrogen bonds in the hexagonal structure, resulting from proton sites with lower symmetry (lower multiplicity), are predominantly responsible for the significant reduction in macroscopic conductivity between cubic and hexagonal BaTi1-xScxO3Hx materials, rather than simply the absolute number of protons. Our findings are highly relevant to the field, clarifying the advantages of high-symmetry structures with high-multiplicity proton sites to favorable properties in ceramic proton-conducting oxides
    • …
    corecore