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Erik Karulf, Marshall Strother, Parker Dunton, and William D. Smart
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Abstract— There is a growing need for robot control inter-
faces that allow a single user to effectively control a large num-
ber of mostly-autonomous robots. The challenges in controlling
such a collection of robots are very similar to the challenges
of controlling characters in some genres of video games. In
this paper, we argue that interfaces based on elements from
computer video games are effective tools for the control of large
robot teams. We present RIDE, the Robot Interactive Display
Environment, an example of such an interface, and give the
results of initial user studies with the interface, which lend
support to our claim.

I. INTRODUCTION

There is a growing need for robot control interfaces that
allow a single user to effectively control more than one
remote robot. The increasing levels of autonomy demon-
strated by our robots allow them to be controlled at higher
and higher levels of abstraction. However, these systems are
not perfect, and human intervention is sometimes required
when unexpected circumstances arise, or an object beyond
the capability of the perception systems must be analyzed.

This requirement for occasional intervention suggests that
our interfaces should be capable of both high-level (task-
based) and low-level (direct teleoperation) control of remote
robots, with the ability to switch easily between these modes,
as required by the situation. The goal of a single operator
controlling many robots also suggests that a system that
allows an individual to alert the operator when help is needed
would be useful. If there are too many robots for the operator
to attend to at once, there is a distinct possibility that a robot
may sit idle, waiting for help, for a long time without such
a notification system.

Many of the problems of controlling remote robots are
similar to the problems of controlling characters in video
games. Real-time strategy games involve controlling many
tens or hundreds of heterogeneous units at once. First- and
third-person games involve the detailed direct control of a
single character. We believe that the interfaces used for these
games make ideal candidates for interfaces for mobile robot
control.

Our motivation for drawing from video games is simple.
Video games with easy-to-use, effective interfaces will be
played more often, and will sell better than games with poor
interfaces. Almost four decades of market forces have refined
interfaces for many genres of games, resulting in systems that

This work was supported by the National Science Foundation, under awar
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are intuitive, easy to use, and effective. Additionally, since
many people play these games, they are already familiar with
the interfaces. We hypothesize that these facts will make
robot control interfaces based on computer game interfaces
highly effective tools.

In this paper we present RIDE, the Robot Interactive
Display Environment, a control interface for robots that
draws heavily on computer game interfaces for inspiration.
It combines aspects from a number of computer game
genres, allowing the operator to switch between direct and
supervisory control as the situation warrants. In addition to
discussing video game interfaces and presenting RIDE, we
give the results of our initial user studies with the interface,
which suggests that it is well-suited to search tasks with
multiple robots.

II. COMPUTER GAME INTERFACES

A. Real-Time Strategy Games

Real-time strategy (RTS) games1 are typically focused on
resource management and combat between a small number of
players (human and computer) who each control large num-
bers of heterogeneous units. These units represent troops,
vehicles, buildings, and similar resources. The goal of these
games is to achieve some pre-specified victory condition
before the other players. These victory conditions are often
specified in terms of accumulating a certain amount of some
resource, occupying some location on the map, annihilating
other players’ units, or some combination of these.

Players give orders to their units at the task level, instruct-
ing them to, for example, engage in combat, harvest some
natural resource, or move to a particular location. Units then
carry out these orders autonomously, reporting back when
they are done or when some unforeseen circumstances are
encountered. Orders are typically given using a graphical
interface, where displayed units can be selected and then
assigned a task.

Figure 1 shows the user interface from Microsoft’s Age of
Empires II [9] RTS, a representative and extremely popular
example of the genre. The interface is dominated by the
main display, which shows an iconic, isometric view of
the world. The viewpoint of the display can be moved to
show different parts of the game world. The display shows

1There is an unfortunate overloading of terms here. In the context of
computer games, “real-time” means that all of the players move their units
at once, rather than taking turns. It has nothing to do with the technical
meaning of “real-time” in the robotics and controls literatures.



Fig. 1. Microsoft’s Age of Empires II real-time strategy user interface
(from [9]).

various types of units (farmers, infantry, cavalry, buildings,
large weapons), terrain (water, trees, plains, farms), and game
information (selected units, waypoints). The player can select
units, individually or in groups, with mouse and keyboard
commands. Once selected, these units can be assigned a
specific task from the task list.

The task list appears in the bottom left of the interface, and
displays icons for all available tasks, based on the currently-
selected units. Some tasks, such as movement, require more
information, which is provided by clicking on the main
display with the mouse.

Information about the currently-selected units is displayed
to the left of the task list. In th figure, a single light cavalry
unit has been selected, and information on its allegiance,
player name, health, weaponry, and armor is shown.

A map of the entire game world, called the minimap, is
displayed in the bottom right corner of the interface. This
map shows the locations of all units, colored according to the
controlling player, along with basic terrain type. Overlaid on
the map is a representation of the view in the main display
(white rectangle). In the figure, only the areas previously
explored by the player are displayed in the minimap. The
world is of finite size in this game, and the minimap is fixed,
both in size and viewpoint.

Clicking anywhere on the displayed part of the minimap
moves the viewpoint in the main display to look at that point.
This gives a quick way of moving the main display viewpoint
around the (potentially large) world. The minimap also
displays primitive notifications; when a unit needs attention,
the colored dot that represents it flashes. A button to the side
of the minimap moves the viewpoint of the main display to
center on a unit currently without an assigned task, if one
exists.

Finally, a menu bar stretches across the top of the display.
This displays current status in the top right (current quan-
tities of resources), and gives access to less-frequently-used
functions, such as help screens and configuration dialogs.

Fig. 2. Halo 3 first-person user interface (from [7])

1) Gameplay: A key feature of RTS games is that there
are too many units for the player to control directly. Although
the individual units have some amount of autonomy, they
occasionally need help and re-tasking from the player. Part
of the challenge of RTS games is to ensure that as many units
as possible are engaged in tasks that help achieve the victory
condition. This means that the player has to switch attention
between different (groups of) units frequently, regain situ-
ational awareness quickly, and deal with the circumstances
that necessitated the intervention.

B. First- and Third-Person Games

First-person games involve the direct control of a single
character by each player. The game world is rendered from
the viewpoint of that character, often with additional game
information overlaid on it. Third-person games are similar,
except that the viewpoint is typically above and behind the
character, and moves with it. Third-person games allow the
player to see the character in the world, and give more of a
sense of context.

Figure 2 shows the user interface for Halo 3 [8], a
recent first-person game. The majority of the interface is
occupied with a rendering of the world from the character’s
perspective. Additional game information is overlaid on this
in the manner of a heads-up display. The bottom left shows a
local map, with the locations of other players and adversaries,
while character and weapon status is displayed along the top.
The player can only see what the character can see, and the
viewpoint is fixed.

1) Gameplay: First-person games involve the direct con-
trol of a character with a limited field of view. Part of
the challenge of these games is to build up a situational
awareness of what is going on around the character, but
cannot be seen. While this often leads to exciting and
engaging games, it is arguably not a design choice that makes
it easy to maintain situational awareness.

Third-person games display the character embedded in the
local world, and give the player some more local context.



However, the viewpoint is still fixed, forcing the player to
reconstruct unseen parts of the world in her head.

III. USER INTERFACE

In this section, we describe the various elements of the
RIDE interface, and how they relate to the video game
interfaces discussed in the previous section. RIDE has three
interface modes: supervisory (corresponding to an RTS in-
terface), third-person, and first-person.

A. Supervisory View

The RIDE supervisory interface is shown in figure 3. We
consider this to be the main interface mode, and the one
in which users will spend the most time when controlling
teams of robots. The main part of the interface shows an
isometric view of the world, showing the robots, their sensor
information, the map (if there is one), and additional status
information. In the figure, two robots are shown, along
with visualizations of their laser range-finders. Notice that
the laser visualization does not exactly correspond to the
displayed map; RIDE simply displays the sensor information
reported to it, and does not attempt to reconcile information
from different sources. Areas of the world that have been
explored are tiled in white, to give the user a sense of the
current coverage. A grid is overlaid on the tiles, to give a
sense of scale.

The user can move the viewpoint around using the key-
board and mouse, to focus on the part of the world that
is currently relevant. To maintain a global perspective, a
display of the entire world is provided in the lower left
of the interface. If a map is given, it is also displayed
here. As more of the world is explored, this mini-map is
scaled so that it continues to show the whole world. Robot
positions are displayed on the mini-map, with currently-
selected robots being colored green. Clicking on the mini-
map causes the main display to jump to the corresponding
location. The viewing frustum of the main display is also
shown in the mini-map for additional context (white line
towards the bottom left of the mini-map in the figure).

Robots in the main display can be selected individually
or in groups using the mouse and keyboard. Selected robots
are highlighted with a green circle (the leftmost robot in
the figure has been selected). When a robot is selected,
information about it appears in the information panel, located
at the bottom of the interface in the center. In the figure,
the selected robot is called “Blood”, is an Erratic, has not
reported its battery status, has no current task, and has only a
laser range-finder. A small iconic representation of the robot
is also shown. These information items are illustrative; in
principle, any information that the robot decides to publish
can be displayed here.

When one or more robots are selected, the tasks that they
are capable of are displayed in the task panel, in the bottom
right of the interface. When more than one robot is selected,
the intersection of the tasks that they are capable of are
displayed. Clicking on a task button assigns that task to
all selected robots, over-riding any currently assigned tasks.

Fig. 4. The RIDE third-person interface mode.

Some tasks require further location information, which is
entered by clicking on the main display of the interface.
The move task, for example, requires an additional single
click to specify a goal location. The patrol task, on the other
hand, requires a sequence of clicks, specifying waypoints to
be followed. The final waypoint is specified by a double-
click. Again, the tasks shown in the interface are illustrative;
robots report the tasks that they are capable of performing to
the interface, and the additional parameters that these tasks
require (see section IV).

A menu bar at the top gives access to configuration dialogs
that allow the user to select colors for various elements in
the display, the sensor information that is displayed (globally,
or on a per-robot basis), and other settings. These settings
can be saved, and restored in future sessions. There are also
menu bar buttons to control the camera viewpoint and zoom
level, toggle the sensor information displayed, and to list all
currently known robots.

Additional sensor information displayed in the interface
includes robot paths and notification status (both active for
the leftmost robot in the figure). Robots may post notifica-
tions when situations requiring user intervention occur (see
section III-D). These are displayed as a red exclamation mark
above the robot, and a corresponding text box on the left side
of the display.

In the bottom right of the interface, a slider allows the user
to select between supervisory, first-, and third-person modes.

B. Third-Person View

The RIDE third-person interface is shown in figure 4.
We consider this to be a secondary interface mode, used
when direct control of a single robot is needed, to extricate
it from situations that it cannot deal with autonomously.
The main display of this mode shows the world from a
viewpoint above and behind the robot. Unlike supervisory
mode, the viewpoint moves with the selected robot. The
user controls the robot directly using the keyboard, mouse



Fig. 3. The RIDE supervisory control interface.

and joystick. Third-person view is entered from supervisory
mode by toggling the slider in the lower right of the display
when a single robot is selected, or by double-clicking on a
robot. The user returns to supervisory mode by hitting the
“escape” key.

In third-person mode, live camera images may be dis-
played in front of the robot, to help the user see things
that are not represented in the sensor visualizations. This
is illustrated in figure 4. The image is displayed as if on a
projector at a (configurable) fixed distance from the robot.

Other than the camera viewpoint, the information dis-
played in this mode is the same as that displayed in supervi-
sory mode. The other elements of the interface also remain
unchanged, with the exception of the task display. Since
third-person mode implies direct control of a single robot, the
task display is replaced with additional sensor visualizations
for that robot. In the figure, we show a plan-view of the
robot, with indicators around it to show the proximity of
obstacles.

C. First-Person View

The RIDE first-person interface is identical to the third-
person interface, except that the camera viewpoint is located
at a fixed position on the robot. If the robot has a video
camera, the viewpoint is typically coincident with the camera
axis. This allows the user to see the world “as the robot sees
it”. If the camera information is displayed in this mode, it

occupies the whole of the main interface display.

D. Notifications

An important feature that cuts across all three interface
modes is the notification system. This allows a robot con-
trolled by RIDE to notify the operator of events that require
attention, such as the completion of a task or a situation that
the robot needs assistance with. Notifications are displayed
in a priority queue on the left of the interface (as shown in
figure 5), where their order is determined by their impor-
tance. Currently, notifications have four importance levels:
informational, warning, error, and fatal.

Notifications are a way of bringing the user’s attention
to a situation that is outside of his current focus. For
example, a robot might have completed an assigned task,
or might have encountered a situation that it cannot deal
with autonomously. In these cases, we would like the user
to respond to the event as quickly as possible, reducing the
amount of time that the robot is sitting idle. A robot may post
notifications to RIDE at any time. RIDE then displays a red
exclamation mark above the robot, and adds the notification
to a priority queue, ordered by severity. Notification boxes
are displayed at the left of the interface, and contain the
name of the robot, the level of the notification, and a brief
description (supplied by the robot). Clicking on a notification
box selects the corresponding robot, and moves the display
viewpoint to focus on it.



Fig. 6. The minimal set of ROS nodes running on each robot controlled by RIDE, for a simulated robot.

Fig. 5. Detail of the RIDE notification system.

IV. IMPLEMENTATION

RIDE is integrated with the ROS robotics middleware
framework [12]. ROS is publish/subscribe framework, where
computational nodes advertise data on topics. Nodes gener-
ally publish data from sensors, take published data and send
it to the robots actuators, or transform data from other nodes
for republishing. The network of ROS nodes and topics for
a robot controlled by RIDE is shown in figure 6. Note that
neither the RIDE interface itself nor the topics it subscribes
and publishes to are shown in the figure for the sake of
clarity.

Each robot runs a RIDE node (ride agent in figure 6),
which publishes information about the robot, including the
tasks that it can perform, the sensors that it has, diagnostic
information, and notifications. The RIDE interface uses this

information to subscribe to relevant sensor, diagnostic, and
notification topics from the robot. Once established, these
are peer-to-peer connections with the nodes that publish
the information, and do not go through the RIDE node.
Figure 6 shows the set of ROS nodes for a simulated robot.
All sensor information (base scan, odom) comes from
the simulator node (state bridge) and, similarly, all
movement commands (cmd vel) are sent there. On a real
robot, there would be separate nodes for each of the sensors,
and for the movement controller.

RIDE also establishes direct connections with the nodes
responsible for performing the tasks that can be allocated to
the robot. In figure 6, this is GoToNode which is responsible
for all movements tasks on the robot. The ride agent
node is also capable of sending movement commands di-
rectly to the motion controller (or simulator), to stop the
robot when needed.

When robots connect to the RIDE interface, the tasks that
they can perform are recorded, and this information is used
to populate the task list when the robots are subsequently
selected. Currently, the set of tasks that a robot can perform
is assumed to be static, and drawn from a fixed set of known
tasks. This assumption allows us to assign an appropriate
icon for each task, and to know the parameters that each
task requires (which require additional modal interactions
with the interface). Similarly, we assume that the sensors
available to our robots are drawn from a known set. This
lets us be sure that we have appropriate visualizations for
each possible sensor. We plan to relax these assumptions in
future implementations (see section VIII).

RIDE is freely available at the Washington University ROS
repository, http://wu-ros-pkg.sourceforge.
net.



V. RELATED WORK

We are not the first to propose an RTS-style interface for
robot control. Jones and Snyder [3] describe a system that
is very similar in spirit to ours, although it is designed for
the control of a small number of free-flying space robots.
This interface is most similar to the main display in RIDE,
but it lacks other features, such as sensor visualization, the
information panel, the minimap, and notifications.

Parasuraman, Galster, and Miller describe a task-level
control interface called Playbook [11], and evaluate it’s
effectiveness on a task where subjects controlled six sim-
ulated unmanned vehicle under a range of conditions. Their
interface had a 2d representation of the world, and limited
sensor visualizations.

Nielsen and Goodrich [10] compared a control interface
that is very similar to the main display of RIDE to one that
presented a direct video feed from the robot alongside a 2d
map. They concluded that the third-person display, with the
video displayed as if on a projection screen in front of the
robot, allowed for easier control of the robot. Our use of this
technique for video display in third-person mode is motivated
by the results of this work.

Richter and Drury [13] surveyed a number of video
game interfaces, and characterized the various recurring
elements within them. They proposed a Video-Game Based
Framework (VGBF) for characterizing HRI interfaces by the
input and output devices and methods, and by their input
classifications.

A number of control interfaces either similar to, or draw
direct inspiration from, RTS games [4], [6], [15], [1] or from
first- or third-person games [5], [2], [1]. However, we are not
aware of any systems which provide as many RTS interface
features as RIDE. We are also not aware of any existing
interfaces that allow the user to move between task-level and
direct control in the way that RIDE allows. We should also
note that the work presented in this paper builds directly on
a previous prototype version of RIDE [14].

VI. USER STUDY

To evaluate the effectiveness of the RIDE interface, and of
the notification system in particular, we conducted a formal
user study. 22 participants (6 female, 16 male) from the
Washington University community participated in the study.
The mean age of the participants was 23.5 (SD = 5.60), and
the median was 21.

Our experiment had two conditions, one in which the
notification system was enabled, and one in which it was
not. Subjects were asked to perform a search task, using two
simulated robots in a small house. Subjects were instructed
to locate three boxes in the house as quickly as possible,
that the boxes were not shown on the map, and that they
would be detected by the robot’s laser range-finder sensor.
Once a box had been found, they were asked to point it
out to the experimenter, to verify that they had found it.
Subjects were also told that they could use any of the features
of the interface that they wanted to. The box locations and
starting positions of the robots were the same in all runs of

the experiment. The simulated robots modeled Videre Design
Erratic ERAs with a Hokuyo URG laser range-finder.

Subjects were asked to fill in a pre-experiment question-
naire,to record their demographic information, experience
with computers and video games, which video games they
play regularly, and experience controlling a robot. After
filling in the questionnaire, subjects were introduced to the
RIDE interface, and allowed approximately five minutes of
training time to familiarize themselves with it.

After the training period, the interface was restarted, and
the subject was asked to perform the task in a randomly-
assigned condition. For each subject, we recorded the total
amount of time needed to compete the task (completion
time), the total time that the robots were not moving and not
selected in the interface (total neglect time), and the amount
of time the robots spend not moving (total idle time). We
also recorded all interface events (button pushes, selections,
etc) for each subject.

On completing the search task, each participant was then
asked to perform a second search task in the other condition.
The data from the second task were not used in this paper.

After completing both search tasks, participants were
asked to fill in a post-experiment questionnaire, recording
their subjective impressions of the interface on a 7-point
Likert scale.

VII. RESULTS

In this section, we present the results of our user study.
All times are presented in seconds. The total neglect time is
the sum of the neglect times for each robot and, thus, can be
greater than the completion time for the task. Similarly, the
total idle time is the sum of idle times for the two robots.

Unless otherwise specified, in the following analysis we
present the results of running a between-participants analysis
of variance (ANOVA), using completion time (CT), total
neglect time (NT), or total idle time (IT) as a dependent
variable. Tabular results report the mean (standard deviation)
of times, the F -statistic from the ANOVA (for F (1, 20)), and
the significance level. Subjective ratings were measured on
a 7-point Likert scale.

A. Effects of Prior Experience

In general, we found that prior experience with video
games or with controlling a robot affected a subject’s per-
formance on the search task.

The single factor that showed the greatest influence on
performance was video game use (table I). Subjects who did
not regularly play video games took almost twice as long, on
average, to complete the search task than subjects who did
regularly play video games. An even more marked difference
was seen in total neglect and idle times. Non-gamers had, on
average, approximately three times longer neglect and idle
times, compared to regular gamers.

Surprisingly, experience playing RTS games did not have
a significant effect on completion time, total neglect time, or
total idle time. However, first-person game experience was
mildly significant for completion time(see table II). Subjects



VG NG F p
CT 244.67 (142.57) 550.43 (178.03) 18.798 ¡ 0.001
NT 181.27 (160.54) 585.57 (218.85) 24.073 ¡ 0.001
IT 238.13 (190.06) 720.00 (319.07) 19.850 ¡ 0.001

TABLE I
EFFECTS OF REGULAR VIDEO GAME USE (VG) VS. NO REGULAR VIDEO

GAME USE (NG).

who played first-person games completed the search task
more quickly than those that did not play first-person games.
Similar results, but with more significance, were seen for
both total neglect time and total idle time.

FP NFP F p
CT 264.82 (150.42) 419.09 (237.44) 3.3138 = 0.0837
NT 195.45 (170.41) 424.36 (291.50) 5.0555 ¡ 0.05
IT 255.09 (202.24) 527.81 (375.06) 4.5062 ¡ 0.05

TABLE II
EFFECTS OF REGULAR FIRST-PERSON VIDEO GAME PLAY (FP) VS. NO

REGULAR FIRST-PERSON VIDEO GAME PLAY.

Prior experience controlling a robot was also significant.
Subjects with previous experience controlling a robot had
lower completion times than subjects with no prior expe-
rience (table III). Similarly total neglect time and total idle
time were both significantly lower for subjects with previous
experience controlling a robot than for those without.

RE NE F p
CT 236.33 (170.27) 415.08 (207.99) 4.5248 ¡ 0.05
NT 163.33 (178.53) 411.38 (265.54) 5.9435 ¡ 0.05
IT 220.22 (222.86) 510.00 (339.22) 5.0228 ¡ 0.05

TABLE III
EFFECTS OF PRIOR EXPERIENCE CONTROLLING A ROBOT (RE) VS. NO

PRIOR EXPERIENCE CONTROLLING A ROBOT (NE)

Finally, the percentage of total time spend in supervisory
mode was somewhat dependent on prior experience of first-
person games. Subjects with prior experience of first-person
games spent more time in supervisory mode than the other
two modes (M=89.86%, SD=15.20) than those subjects with
no experience of first-person games (M=72.60%, SD=23.28),
F(1,20)=4.2348, p=0.05287.

B. Use of Supervisory Mode

Subjects spent, on average, more than 69% of their time in
supervisory mode (t = 2.4944, p ¡ 0.01), and less than 0.3%
of their time in first-person mode (t = -2.747, p ¡ 0.01).

Completion time, total neglect time, and total idle time
were significantly affected by the percentage of total time
spend in supervisory mode. The median time percentage of
time spent by subjects in supervisory was 94.19%. Subjects
that spend more than this median percentage of time in
supervisory mode completed the search task, on average,
twice as fast as subjects who spent less than median time
in supervisory mode (table IV). The effects on total neglect
time and total idle time were similar.

GM LM F p
CT 197.17 (79.80) 515.70 (181.79) 30.119 ¡ 0.001
NT 124.17 (89.09) 532.80 (218.64) 35.198 ¡ 0.001
IT 174.17 (111.90) 652.20 (305.51) 25.482 ¡ 0.001

TABLE IV
EFFECTS OF SPENDING GREATER THAN MEDIAN TIME IN SUPERVISORY

MODE (GM) VS. SPENDING LESS THAN MEDIAN TIME IN SUPERVISORY

MODE (LM).

C. Effects of Notifications

Subjects rated the task as easier to perform with no-
tifications (M=1.70, SD=0.94) than without notifications
(M=2.67, SD=0.98), F(1,20)=5.4319, p¡0.05. Subjects also
rated themselves as needing less help with notifications
enabled (M=1.50, SD=0.71) than with notifications disabled
(M=2.50, SD=1.09), F(1,20)=6.2338, p¡0.05.

Subjects’ ratings of how easy it was to control the robot
were also mildly affected by the use of notifications. Subjects
rated the robot as easier to control with notifications enabled
(M=1.80, SD=0.92) than with notifications disabled (M=2.58,
SD=0.90), F(1,20)=4.0528, p=0.05775.

Although notifications had no significant effect on com-
pletion time, total neglect time, or total idle time across all
subjects, a significant effect was noticed for subjects without
prior robot control experience. For subjects with no prior
experience controlling robots, the time taken to complete the
search task was significantly less with notifications enabled
(table V). Total neglect time, and total idle time were sim-
ilarly dramatically reduced in this group with notifications
enabled.

NE ND F p
CT 301.57 (149.13) 547.50 (195.07) 6.6401 ¡ 0.05
NT 269.21 (204.21) 576.50 (241.72) 6.1615 ¡ 0.05
IT 319.86 (205.03) 731.83 (340.67) 7.2453 ¡ 0.05

TABLE V
EFFECTS OF ENABLING NOTIFICATIONS (NE) VS. DISABLING

NOTIFICATIONS (ND).

VIII. DISCUSSION

The results presented in the previous section show, unsur-
prisingly, that subjects who play video games or have prior
experience controlling robots are better at performing the
search task (ie have lower completion, total neglect, and total
idle times) with the RIDE interface than those who do not
regularly play video games. However, playing RTS games
seems to have no significant effect on the how well subjects
perform the task. Experience with first-person games, on the
other hand, does have an effect, decreasing all three times.
However, this first-person game experience caused subjects
to use the first-person interface less than subjects who did not
play first-person games. While this seems somewhat counter-
intuitive at first, we hypothesize that, because of their prior
familiarity with this type of interface, they recognized it as
less appropriate for the task that the supervisory interface.



Subjects preferred to use the supervisory mode interface,
spending over 69% of their time, on average, in this mode.
First-person mode was only used by a single subject dur-
ing non-training runs. This might be caused by a current
limitation of our interface, however. Currently, the map is
rendered as a texture on the ground plane, making it hard to
see and correctly interpret while in first-person view, because
of the acute viewing angle. We hypothesize that, if the map
were rendered in 3d, with the “walls” coming out of the
floor (similar to the interface in Bruemmer et al. [1]), the
operator would have a better sense of where the robot was
with respect to the map, and the first-person interface would
be used more.

The percentage of time spent in supervisory mode dramat-
ically affects the times, with higher percentages correlating
with much faster completion, and much reduced neglect and
idle times. This suggests that an RTS interface is appropriate
than first- or third-person interfaces for this type of search
task.

Notifications have a similarly beneficial effect, making the
task subjectively easier to perform, and causing the subjects
to ask for help less frequently. Surprisingly, across our whole
population, notifications did not have significant effect on
completion time, total neglect time, or total idle time.

However, the use of notifications did have a significant
effect on subjects with no prior robot control experience,
lowering completion time, neglect time, and idle time dra-
matically. We attribute this difference in effect to a flaw
in our experimental design. We believe that the two-robot
search task was not taxing enough for those who had
controlled robots before and who, presumably, understood
something of how they worked. We hypothesize that these
subjects were able to manually monitor both robots at the
same time, waiting for the expected failures and interven-
tions, making the notification system redundant. More naı̈ve
users, on the other hand, might not notice a robot in need of
help when attending to the other robot, leading to increased
total neglect and idle times. In this situation, notifications
serve a critical function.

Our future plans call for another study with a larger world
and more robots. Such a study, we believe, will show the
benefits of notifications across the whole population when
even experienced users cannot realistically monitor all robots
at once.

In conclusion, we believe that mixed-mode video-game-
based interfaces such as RIDE offer an effective way to
control large numbers of mostly-autonomous mobile robots.
Our initial studies suggest that an active notification system
allows naı̈ve users to more efficiently control teams of robots,
reducing neglect and idle times, and we believe that this
result will also apply to more experienced users in situations
where they are sufficiently overloaded, or where unexpected
events happen frequently.
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