301 research outputs found

    Lower bounds in differential privacy

    Full text link
    This is a paper about private data analysis, in which a trusted curator holding a confidential database responds to real vector-valued queries. A common approach to ensuring privacy for the database elements is to add appropriately generated random noise to the answers, releasing only these {\em noisy} responses. In this paper, we investigate various lower bounds on the noise required to maintain different kind of privacy guarantees.Comment: Corrected some minor errors and typos. To appear in Theory of Cryptography Conference (TCC) 201

    The early evolution of the H-free process

    Full text link
    The H-free process, for some fixed graph H, is the random graph process defined by starting with an empty graph on n vertices and then adding edges one at a time, chosen uniformly at random subject to the constraint that no H subgraph is formed. Let G be the random maximal H-free graph obtained at the end of the process. When H is strictly 2-balanced, we show that for some c>0, with high probability as nn \to \infty, the minimum degree in G is at least cn1(vH2)/(eH1)(logn)1/(eH1)cn^{1-(v_H-2)/(e_H-1)}(\log n)^{1/(e_H-1)}. This gives new lower bounds for the Tur\'an numbers of certain bipartite graphs, such as the complete bipartite graphs Kr,rK_{r,r} with r5r \ge 5. When H is a complete graph KsK_s with s5s \ge 5 we show that for some C>0, with high probability the independence number of G is at most Cn2/(s+1)(logn)11/(eH1)Cn^{2/(s+1)}(\log n)^{1-1/(e_H-1)}. This gives new lower bounds for Ramsey numbers R(s,t) for fixed s5s \ge 5 and t large. We also obtain new bounds for the independence number of G for other graphs H, including the case when H is a cycle. Our proofs use the differential equations method for random graph processes to analyse the evolution of the process, and give further information about the structure of the graphs obtained, including asymptotic formulae for a broad class of subgraph extension variables.Comment: 36 page

    A decomposition based proof for fast mixing of a Markov chain over balanced realizations of a joint degree matrix

    Get PDF
    A joint degree matrix (JDM) specifies the number of connections between nodes of given degrees in a graph, for all degree pairs and uniquely determines the degree sequence of the graph. We consider the space of all balanced realizations of an arbitrary JDM, realizations in which the links between any two degree groups are placed as uniformly as possible. We prove that a swap Markov Chain Monte Carlo (MCMC) algorithm in the space of all balanced realizations of an {\em arbitrary} graphical JDM mixes rapidly, i.e., the relaxation time of the chain is bounded from above by a polynomial in the number of nodes nn. To prove fast mixing, we first prove a general factorization theorem similar to the Martin-Randall method for disjoint decompositions (partitions). This theorem can be used to bound from below the spectral gap with the help of fast mixing subchains within every partition and a bound on an auxiliary Markov chain between the partitions. Our proof of the general factorization theorem is direct and uses conductance based methods (Cheeger inequality).Comment: submitted, 18 pages, 4 figure

    The history of degenerate (bipartite) extremal graph problems

    Full text link
    This paper is a survey on Extremal Graph Theory, primarily focusing on the case when one of the excluded graphs is bipartite. On one hand we give an introduction to this field and also describe many important results, methods, problems, and constructions.Comment: 97 pages, 11 figures, many problems. This is the preliminary version of our survey presented in Erdos 100. In this version 2 only a citation was complete

    Blocking Coloured Point Sets

    Full text link
    This paper studies problems related to visibility among points in the plane. A point xx \emph{blocks} two points vv and ww if xx is in the interior of the line segment vwˉ\bar{vw}. A set of points PP is \emph{kk-blocked} if each point in PP is assigned one of kk colours, such that distinct points v,wPv,w\in P are assigned the same colour if and only if some other point in PP blocks vv and ww. The focus of this paper is the conjecture that each kk-blocked set has bounded size (as a function of kk). Results in the literature imply that every 2-blocked set has at most 3 points, and every 3-blocked set has at most 6 points. We prove that every 4-blocked set has at most 12 points, and that this bound is tight. In fact, we characterise all sets {n1,n2,n3,n4}\{n_1,n_2,n_3,n_4\} such that some 4-blocked set has exactly nin_i points in the ii-th colour class. Amongst other results, for infinitely many values of kk, we construct kk-blocked sets with k1.79...k^{1.79...} points

    Topological properties and fractal analysis of recurrence network constructed from fractional Brownian motions

    Full text link
    Many studies have shown that we can gain additional information on time series by investigating their accompanying complex networks. In this work, we investigate the fundamental topological and fractal properties of recurrence networks constructed from fractional Brownian motions (FBMs). First, our results indicate that the constructed recurrence networks have exponential degree distributions; the relationship between HH and canberepresentedbyacubicpolynomialfunction.Wenextfocusonthemotifrankdistributionofrecurrencenetworks,sothatwecanbetterunderstandnetworksatthelocalstructurelevel.Wefindtheinterestingsuperfamilyphenomenon,i.e.therecurrencenetworkswiththesamemotifrankpatternbeinggroupedintotwosuperfamilies.Last,wenumericallyanalyzethefractalandmultifractalpropertiesofrecurrencenetworks.Wefindthattheaveragefractaldimension can be represented by a cubic polynomial function. We next focus on the motif rank distribution of recurrence networks, so that we can better understand networks at the local structure level. We find the interesting superfamily phenomenon, i.e. the recurrence networks with the same motif rank pattern being grouped into two superfamilies. Last, we numerically analyze the fractal and multifractal properties of recurrence networks. We find that the average fractal dimension of recurrence networks decreases with the Hurst index HH of the associated FBMs, and their dependence approximately satisfies the linear formula 2H \approx 2 - H. Moreover, our numerical results of multifractal analysis show that the multifractality exists in these recurrence networks, and the multifractality of these networks becomes stronger at first and then weaker when the Hurst index of the associated time series becomes larger from 0.4 to 0.95. In particular, the recurrence network with the Hurst index H=0.5H=0.5 possess the strongest multifractality. In addition, the dependence relationships of the average information dimension andtheaveragecorrelationdimension and the average correlation dimension on the Hurst index HH can also be fitted well with linear functions. Our results strongly suggest that the recurrence network inherits the basic characteristic and the fractal nature of the associated FBM series.Comment: 25 pages, 1 table, 15 figures. accepted by Phys. Rev.

    Percolation of Partially Interdependent Scale-free Networks

    Full text link
    We study the percolation behavior of two interdependent scale-free (SF) networks under random failure of 1-pp fraction of nodes. Our results are based on numerical solutions of analytical expressions and simulations. We find that as the coupling strength between the two networks qq reduces from 1 (fully coupled) to 0 (no coupling), there exist two critical coupling strengths q1q_1 and q2q_2, which separate three different regions with different behavior of the giant component as a function of pp. (i) For qq1q \geq q_1, an abrupt collapse transition occurs at p=pcp=p_c. (ii) For q2<q<q1q_2<q<q_1, the giant component has a hybrid transition combined of both, abrupt decrease at a certain p=pcjumpp=p^{jump}_c followed by a smooth decrease to zero for p<pcjumpp < p^{jump}_c as pp decreases to zero. (iii) For qq2q \leq q_2, the giant component has a continuous second-order transition (at p=pcp=p_c). We find that (a)(a) for λ3\lambda \leq 3, q11q_1 \equiv 1; and for λ>3\lambda > 3, q1q_1 decreases with increasing λ\lambda. (b)(b) In the hybrid transition, at the q2<q<q1q_2 < q < q_1 region, the mutual giant component PP_{\infty} jumps discontinuously at p=pcjumpp=p^{jump}_c to a very small but non-zero value, and when reducing pp, PP_{\infty} continuously approaches to 0 at pc=0p_c = 0 for λ0\lambda 0 for λ>3\lambda > 3. Thus, the known theoretical pc=0p_c=0 for a single network with λ3\lambda \leqslant 3 is expected to be valid also for strictly partial interdependent networks.Comment: 20 pages, 17 figure

    Game saturation of intersecting families

    Get PDF
    We consider the following combinatorial game: two players, Fast and Slow, claim kk-element subsets of [n]={1,2,...,n}[n]=\{1,2,...,n\} alternately, one at each turn, such that both players are allowed to pick sets that intersect all previously claimed subsets. The game ends when there does not exist any unclaimed kk-subset that meets all already claimed sets. The score of the game is the number of sets claimed by the two players, the aim of Fast is to keep the score as low as possible, while the aim of Slow is to postpone the game's end as long as possible. The game saturation number is the score of the game when both players play according to an optimal strategy. To be precise we have to distinguish two cases depending on which player takes the first move. Let gsatF(In,k)gsat_F(\mathbb{I}_{n,k}) and gsatS(In,k)gsat_S(\mathbb{I}_{n,k}) denote the score of the saturation game when both players play according to an optimal strategy and the game starts with Fast's or Slow's move, respectively. We prove that Ωk(nk/35)gsatF(In,k),gsatS(In,k)Ok(nkk/2)\Omega_k(n^{k/3-5}) \le gsat_F(\mathbb{I}_{n,k}),gsat_S(\mathbb{I}_{n,k}) \le O_k(n^{k-\sqrt{k}/2}) holds

    The critical window for the classical Ramsey-Tur\'an problem

    Get PDF
    The first application of Szemer\'edi's powerful regularity method was the following celebrated Ramsey-Tur\'an result proved by Szemer\'edi in 1972: any K_4-free graph on N vertices with independence number o(N) has at most (1/8 + o(1)) N^2 edges. Four years later, Bollob\'as and Erd\H{o}s gave a surprising geometric construction, utilizing the isoperimetric inequality for the high dimensional sphere, of a K_4-free graph on N vertices with independence number o(N) and (1/8 - o(1)) N^2 edges. Starting with Bollob\'as and Erd\H{o}s in 1976, several problems have been asked on estimating the minimum possible independence number in the critical window, when the number of edges is about N^2 / 8. These problems have received considerable attention and remained one of the main open problems in this area. In this paper, we give nearly best-possible bounds, solving the various open problems concerning this critical window.Comment: 34 page

    On high moments of strongly diluted large Wigner random matrices

    Full text link
    We consider a dilute version of the Wigner ensemble of nxn random matrices HH and study the asymptotic behavior of their moments M2sM_{2s} in the limit of infinite nn, ss and ρ\rho, where ρ\rho is the dilution parameter. We show that in the asymptotic regime of the strong dilution, the moments M2sM_{2s} with s=χρs=\chi\rho depend on the second and the fourth moments of the random entries HijH_{ij} and do not depend on other even moments of HijH_{ij}. This fact can be regarded as an evidence of a new type of the universal behavior of the local eigenvalue distribution of strongly dilute random matrices at the border of the limiting spectrum. As a by-product of the proof, we describe a new kind of Catalan-type numbers related with the tree-type walks.Comment: 43 pages (version four: misprints corrected, discussion added, other minor modifications
    corecore