8,405 research outputs found

    Trust-based model for privacy control in context aware systems

    Get PDF
    In context-aware systems, there is a high demand on providing privacy solutions to users when they are interacting and exchanging personal information. Privacy in this context encompasses reasoning about trust and risk involved in interactions between users. Trust, therefore, controls the amount of information that can be revealed, and risk analysis allows us to evaluate the expected benefit that would motivate users to participate in these interactions. In this paper, we propose a trust-based model for privacy control in context-aware systems based on incorporating trust and risk. Through this approach, it is clear how to reason about trust and risk in designing and implementing context-aware systems that provide mechanisms to protect users' privacy. Our approach also includes experiential learning mechanisms from past observations in reaching better decisions in future interactions. The outlined model in this paper serves as an attempt to solve the concerns of privacy control in context-aware systems. To validate this model, we are currently applying it on a context-aware system that tracks users' location. We hope to report on the performance evaluation and the experience of implementation in the near future

    A Mid-Infrared Galaxy Atlas (MIGA)

    Full text link
    A mid-infrared atlas of part of the Galactic plane (75<l<148,b=±675^\circ < l < 148^\circ, b = \pm6^\circ) has been constructed using HIRES processed infrared data to provide a mid-infrared data set for the Canadian Galactic Plane Survey (CGPS). The addition of this data set to the CGPS will enable the study of the emission from the smallest components of interstellar dust at an angular resolution comparable to that of the radio, millimetre, and far-infrared data in the CGPS. The Mid-Infrared Galaxy Atlas (MIGA) is a mid-infrared (12 μ\mum and 25 μ\mum) counterpart to the far-infrared IRAS Galaxy Atlas (IGA), and consists of resolution enhanced (0.5\sim 0.5' resolution) HIRES images along with ancillary maps. This paper describes the processing and characteristics of the atlas, the cross-beam simulation technique used to obtain high-resolution ratio maps, and future plans to extend both the IGA and MIGA.Comment: 38 pages (including 15 tables), 13 figures (8 dithered GIF and 5 EPS). Submitted to Astrophysical Journal Supplement Series. A preprint with higher resolution figures is available at http://www.cita.utoronto.ca/~kerton/publications.htm

    On trust and privacy in context-aware systems

    Get PDF
    Recent advances in networking, handheld computing and sensors technologies have led to the emergence of context-aware systems. The vast amounts of personal information collected by such systems has led to growing concerns about the privacy of their users. Users concerned about their private information are likely to refuse participation in such systems. Therefore, it is quite clear that for any context-aware system to be acceptable by the users, mechanisms for controlling access to personal information are a necessity. According to Alan Westin "privacy is the claim of individuals, groups, or institutions to determine for themselves when, how and to what extent information is communicated to others"1. Within this context we can classify users as either information owners or information receivers. It is also acknowledged that information owners are willing to disclose personal information if this disclosure is potentially beneficial. So, the acceptance of any context-aware system depends on the provision of mechanisms for fine-grained control of the disclosure of personal information incorporating an explicit notion of benefit

    Elimination of the light shift in rubidium gas cell frequency standards using pulsed optical pumping

    Get PDF
    Changes in the intensity of the light source in an optically pumped, rubidium, gas cell frequency standard can produce corresponding frequency shifts, with possible adverse effects on the long-term frequency stability. A pulsed optical pumping apparatus was constructed with the intent of investigating the frequency stability in the absence of light shifts. Contrary to original expectations, a small residual frequency shift due to changes in light intensity was experimentally observed. Evidence is given which indicates that this is not a true light-shift effect. Preliminary measurements of the frequency stability of this apparatus, with this small residual pseudo light shift present, are presented. It is shown that this pseudo light shift can be eliminated by using a more homogeneous C-field. This is consistent with the idea that the pseudo light shift is due to inhomogeneity in the physics package (position-shift effect)

    Examining the Contributions of Glacial Till Water to Storm Runoff using Two- and Three-Component Hydrograph Separations

    Get PDF
    Two- and three-component hydrograph separations based on 18O and dissolved silica are used to investigate the contributions of glacial till water to the storm runoff of a headwater stream on the Canadian Shield. Two-component isotopic hydrograph separations based on 18O indicate that the volume and flux of event water could be accounted for by direct precipitation onto saturated areas. Three-component hydrograph separations distinguish between event water, preevent soil water, and preevent till water. These results show that groundwater flow through coarse-textured glacial tills can make a significant contribution to stream discharge during runoff events (29 and 62% in this study) despite the lower hydraulic conductivities of the tills compared to the overlying soils. The three-component hydrograph separations also demonstrate that the relative contributions of preevent soil water and preevent till water changed during one runoff event such that the average water chemistry of the preevent component varied during the event. Two-component hydrograph separations using dissolved silica indicate that seasonal changes in the till water contributions also occur and are related to groundwater levels. Measurements of vertical hydraulic gradients during runoff events indicate that the increase in flow from the tills to the soils is minimal and cannot account for the large and rapid increase in till water flow into the stream. Till water that has discharged to the soils prior to the event is probably being flushed from the soils into the stream during events

    Privacy, security, and trust issues in smart environments

    Get PDF
    Recent advances in networking, handheld computing and sensor technologies have driven forward research towards the realisation of Mark Weiser's dream of calm and ubiquitous computing (variously called pervasive computing, ambient computing, active spaces, the disappearing computer or context-aware computing). In turn, this has led to the emergence of smart environments as one significant facet of research in this domain. A smart environment, or space, is a region of the real world that is extensively equipped with sensors, actuators and computing components [1]. In effect the smart space becomes a part of a larger information system: with all actions within the space potentially affecting the underlying computer applications, which may themselves affect the space through the actuators. Such smart environments have tremendous potential within many application areas to improve the utility of a space. Consider the potential offered by a smart environment that prolongs the time an elderly or infirm person can live an independent life or the potential offered by a smart environment that supports vicarious learning

    Patient-oriented and performance-based outcomes after knee autologous chondrocyte implantation: a timeline for the first year of recovery

    Get PDF
    It is well established that autologous chondrocyte implantation (ACI) can require extended recovery postoperatively; however, little information exists to provide clinicians and patients with a timeline for anticipated function during the first year after ACI. Objective: To document the recovery of functional performance of activities of daily living after ACI. Patients: ACI patients (n = 48, 29 male 35.1 ± 8.0 y). Intervention: All patients completed functional tests (weight-bearing squat, walk-across, sit-to-stand, step-up/over, and forward lunge) using the NeuroCom long force plate (Clackamas, OR) and completed patient-reported outcome measures (International Knee Documentation Committee Subjective Knee Evaluation Form, Lysholm, Western Ontario and McMaster Osteoarthritis Index WOMAC, and 36-Item Short-Form Health Survey) preoperatively and 3, 6, and 12 mo postoperatively. Main Outcome Measures: A covariance pattern model was used to compare performance and self-reported outcome across time and provide a timeline for functional recovery after ACI. Results: Participants demonstrated significant improvement in walk-across stride length from baseline (42.0% ± 8.9% height) at 6 (46.8% ± 8.1%) and 12 mo (46.6% ± 7.6%). Weight bearing on the involved limb during squatting at 30°, 60°, and 90° was significantly less at 3 mo than presurgery. Step-up/over time was significantly slower at 3 mo (1.67 ± 0.69 s) than at baseline (1.49 ± 0.33 s), 6 mo (1.51 ± 0.36 s), and 12 mo (1.40 ± 0.26 s). Step-up/over lift-up index was increased from baseline (41.0% ± 11.3% body weight BW) at 3 (45.0% ± 11.7% BW), 6 (47.0% ± 11.3% BW), and 12 mo (47.3% ± 11.6% BW). Forward-lunge time was decreased at 3 mo (1.51 ± 0.44 s) compared with baseline (1.39 ± 0.43 s), 6 mo (1.32 ± 0.05 s), and 12 mo (1.27 ± 0.06). Similarly, forward-lunge impact force was decreased at 3 mo (22.2% ± 1.4% BW) compared with baseline (25.4% ± 1.5% BW). The WOMAC demonstrated significant improvements at 3 mo. All patient-reported outcomes were improved from baseline at 6 and 12 mo postsurgery. Conclusions: Patients' perceptions of improvements may outpace physical changes in function. Decreased function for at least the first 3 mo after ACI should be anticipated, and improvement in performance of tasks requiring weight-bearing knee flexion, such as squatting, going down stairs, or lunging, may not occur for a year or more after surgery

    ECONOMIC AND ENVIRONMENTAL BENEFITS OF VARIABLE RATE APPLICATION OF NITROGEN TO CORN FIELDS: ROLE OF VARIABILITY AND WEATHER

    Get PDF
    The use of meta-response functions based on EPIC-generated data resulted in comparisons between variable (VRAT) and uniform rate application technologies for 36 simulated fields. VRAT was more profitable and less nitrogen was lost to the environment in most cases. When spatial variability was small, uniform rate application techniques were adopted. However, when nitrogen use is restricted, VRAT is used on all simulated fields.Precision farming, site-specific farming, spatial variability, nitrogen restriction, rainfall, EPIC, crop growth simulation model, meta-response functions, Environmental Economics and Policy, Research and Development/Tech Change/Emerging Technologies, Resource /Energy Economics and Policy,

    ASSESSING SPATIAL BREAK-EVEN VARIABILITY IN FIELDS WITH TWO OR MORE MANAGEMENT ZONES

    Get PDF
    Farmers are interested in knowing whether applying inputs at variable rates across a field is economically viable. The answer depends on the crop, the input, their prices, the cost of variable rate technology (VRT) versus uninform rate technology (URT), and the spatial and yield response variability within each field. Methods were investigated for determining the range of spatial variability over which the return to VRT covers its additional cost compared with URT in fields with multiple management zones. Models developed in this article, or variants thereof, could be used to help farmers make the VRT adoption decision.management zones, nitrogen, precision farming, site-specific management, spatial break-even variability proportions, spatial variability, variable rate technology, yield response variability, Farm Management,

    Dynamic trust models for ubiquitous computing environments

    Get PDF
    A significant characteristic of ubiquitous computing is the need for interactions of highly mobile entities to be secure: secure both for the entity and the environment in which the entity operates. Moreover, ubiquitous computing is also characterised by partial views over the state of the global environment, implying that we cannot guarantee that an environment can always verify the properties of the mobile entity that it has just received. Secure in this context encompasses both the need for cryptographic security and the need for trust, on the part of both parties, that the interaction is functioning as expected. In this paper we make a broad assumption that trust and cryptographic security can be considered as orthogonal concerns (i.e. an entity might encrypt a deliberately incorrect answer to a legitimate request). We assume the existence of reliable encryption techniques and focus on the characteristics of a model that supports the management of the trust relationships between two entities during an interaction in a ubiquitous environment
    corecore