research

Elimination of the light shift in rubidium gas cell frequency standards using pulsed optical pumping

Abstract

Changes in the intensity of the light source in an optically pumped, rubidium, gas cell frequency standard can produce corresponding frequency shifts, with possible adverse effects on the long-term frequency stability. A pulsed optical pumping apparatus was constructed with the intent of investigating the frequency stability in the absence of light shifts. Contrary to original expectations, a small residual frequency shift due to changes in light intensity was experimentally observed. Evidence is given which indicates that this is not a true light-shift effect. Preliminary measurements of the frequency stability of this apparatus, with this small residual pseudo light shift present, are presented. It is shown that this pseudo light shift can be eliminated by using a more homogeneous C-field. This is consistent with the idea that the pseudo light shift is due to inhomogeneity in the physics package (position-shift effect)

    Similar works