1,778 research outputs found

    Development of Epithelial Attachment and Gingival Sulcus in Rhesus Monkeys

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141260/1/jper0044.pd

    Healing Following Simple Gingivectomy. A Tritiated Thymidine Radioautographic Study. I. Epithelialization

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142075/1/jper0298.pd

    Diffractive triangulation of radiative point sources

    Get PDF
    We describe a general method to determine the location of a point source of waves relative to a twodimensional single-crystalline active pixel detector. Based on the inherent structural sensitivity of crystalline sensor materials, characteristic detector diffraction patterns can be used to triangulate the location of a wave emitter. The principle described here can be applied to various types of waves, provided that the detector elements are suitably structured. As a prototypical practical application of the general detection principle, a digital hybrid pixel detector is used to localize a source of electrons for Kikuchi diffraction pattern measurements in the scanning electron microscope. This approach provides a promising alternative method to calibrate Kikuchi patterns for accurate measurements of microstructural crystal orientations, strains, and phase distributions

    Very long storage times and evaporative cooling of cesium atoms in a quasi-electrostatic dipole trap

    Get PDF
    We have trapped cesium atoms over many minutes in the focus of a CO2_2-laser beam employing an extremely simple laser system. Collisional properties of the unpolarized atoms in their electronic ground state are investigated. Inelastic binary collisions changing the hyperfine state lead to trap loss which is quantitatively analyzed. Elastic collisions result in evaporative cooling of the trapped gas from 25 μ\muK to 10 μ\muK over a time scale of about 150 s.Comment: 5 pages, 3 figure

    Advances in Microstructural Understanding of Wrought Aluminum Alloys

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2020-03-12, registration 2020-06-24, online 2020-07-08, pub-electronic 2020-07-08, pub-print 2020-09Publication status: PublishedAbstract: Wrought aluminum alloys are an attractive option in the quest for lightweight, recyclable, structural materials. Modern wrought aluminum alloys depend on control of complex microstructures to obtain their properties. This requires an understanding of the coupling between alloy composition, processing, and microstructure. This paper summarizes recent work to understand microstructural evolution in such alloys, utilizing the advanced characterization techniques now available such as atom probe tomography, high-resolution electron microscopy, and synchrotron X-ray diffraction and scattering. New insights into precipitation processes, deformation behavior, and texture evolution are discussed. Recent progress in predicting microstructural evolution using computer modeling is also summarized

    Two-dimensional atom trapping in field-induced adiabatic potentials

    Get PDF
    We show how to create a novel two-dimensional trap for ultracold atoms from a conventional magnetic trap. We achieve this by utilizing rf-induced adiabatic potentials to enhance the trapping potential in one direction. We demonstrate the loading process and discuss the experimental conditions under which it might be possible to prepare a 2D Bose condensate. A scheme for the preparation of coherent matterwave bubbles is also discussed

    A Modeling Study on How Cell Division Affects Properties of Epithelial Tissues Under Isotropic Growth

    Get PDF
    Cell proliferation affects both cellular geometry and topology in a growing tissue, and hence rules for cell division are key to understanding multicellular development. Epithelial cell layers have for long times been used to investigate how cell proliferation leads to tissue-scale properties, including organism-independent distributions of cell areas and number of neighbors. We use a cell-based two-dimensional tissue growth model including mechanics to investigate how different cell division rules result in different statistical properties of the cells at the tissue level. We focus on isotropic growth and division rules suggested for plant cells, and compare the models with data from the Arabidopsis shoot. We find that several division rules can lead to the correct distribution of number of neighbors, as seen in recent studies. In addition we find that when also geometrical properties are taken into account other constraints on the cell division rules result. We find that division rules acting in favor of equally sized and symmetrically shaped daughter cells can best describe the statistical tissue properties

    Energy Spectra of Elemental Groups of Cosmic Rays: Update on the KASCADE Unfolding Analysis

    Get PDF
    The KASCADE experiment measures extensive air showers induced by cosmic rays in the energy range around the so-called knee. The data of KASCADE have been used in a composition analysis showing the knee at 3-5 PeV to be caused by a steepening in the light-element spectra. Since the applied unfolding analysis depends crucially on simulations of air showers, different high energy hadronic interaction models (QGSJet and SIBYLL) were used. The results have shown a strong dependence of the relative abundance of the individual mass groups on the underlying model. In this update of the analysis we apply the unfolding method with a different low energy interaction model (FLUKA instead of GHEISHA) in the simulations. While the resulting individual mass group spectra do not change significantly, the overall description of the measured data improves by using the FLUKA model. In addition data in a larger range of zenith angle are analysed. The new results are completely consistent, i.e. there is no hint to any severe problem in applying the unfolding analysis method to KASCADE data.Comment: accepted for publication in Astroparticle Physic
    • …
    corecore