23,641 research outputs found
Large-Scale Calculations of the Double-Beta Decay of 76Ge, 130Te, 136Xe, and 150Nd in the Deformed Self-Consistent Skyrme Quasiparticle Random-Phase Approximation
We use the axially-deformed Skyrme Quasiparticle Random-Phase Approximation
(QRPA) together with the SkM* energy-density functional, both as originally
presented and with the time-odd part adjusted to reproduce the Gamow-Teller
resonance energy in 208Pb, to calculate the matrix elements governing the
neutrinoless double-beta decay of 76Ge, 130Te, 136Xe, and 150Nd. Our matrix
elements in 130Te and 136Xe are significantly smaller than those of previous
QRPA calculations, primarily because of the difference in pairing or
deformation between the initial and final nuclei. In 76Ge and 150Nd our results
are similar to those of less computationally intensive QRPA calculations. We
suspect the 76Ge result, however, because we are forced to use a spherical
ground-state, even though the HFB indicates a deformed minimum.Comment: 9 pages, 4 figure
Subtraction method in the second random--phase approximation: first applications with a Skyrme energy functional
We make use of a subtraction procedure, introduced to overcome
double--counting problems in beyond--mean--field theories, in the second
random--phase--approximation (SRPA) for the first time. This procedure
guarantees the stability of SRPA (so that all excitation energies are real). We
show that the method fits perfectly into nuclear density--functional theory. We
illustrate applications to the monopole and quadrupole response and to
low--lying and states in the nucleus O. We show that the
subtraction procedure leads to: (i) results that are weakly cutoff dependent;
(ii) a considerable reduction of the SRPA downwards shift with respect to the
random--phase approximation (RPA) spectra (systematically found in all previous
applications). This implementation of the SRPA model will allow a reliable
analysis of the effects of 2 particle--2 hole configurations () on the
excitation spectra of medium--mass and heavy nuclei.Comment: 1 tex, 16 figure
Limit on T-violating P-conserving rhoNN interaction from the gamma decay of Fe-57
We use the experimental limit on the interference of M1 and E2 multipoles in the γ decay of 57Fe to bound the time-reversal-violating parity-conserving ρNN vertex. Our approach is a large-basis shell-model calculation of the interference. We find an upper limit on the parameter g¯ρ, the relative strength of the T-violating ρNN vertex, of close to 10^(-2), a value similar to the best limits from other experiments
Cycled operation of water vapor electrolysis cell Annual report, 1 Jan. - 31 Dec. 1969
Mathematical model of heat, mass, and momentum relationships in cyclic operation of water vapor electrolytic cell, and equilibrium conditions between gel matrix and vapo
Native chick laminin-4 containing the beta 2 chain (s-laminin) promotes motor axon growth.
After denervation of muscle, motor axons reinnervate original synaptic sites. A recombinant fragment of the synapse specific laminin beta 2 chain (s-laminin) was reported to inhibit motor axon growth. Consequently, a specific sequence (leucine-arginine-glutamate, LRE) of the laminin beta 2 chain was proposed to act as a stop signal and to mediate specific reinnervation at the neuromuscular junction (Porter, B.E., J. Weis, and J.R. Sanes. 1995. Neuron. 14:549-559). We demonstrate here that native chick laminin-4, which contains the beta 2 chain and is present in the synaptic basement membrane, does not inhibit but rather promotes motor axon growth. In native heterotrimeric laminin, the LRE sequence of the beta 2 chain is found in a triple coiled-coil region that is formed by all three subunits. We show here that the effect of LRE depends on the structural context. Whereas a recombinant randomly coiled LRE peptide indeed inhibited outgrowth by chick motoneurons, a small recombinant triple coiled-coil protein containing this sequence did not
Public Release of 2dF data from the Fornax Cluster Spectroscopic Survey
Thanks to the 2dF spectrograph on the Anglo-Australian Telescope, we have
recently completed the first stage of a complete spectroscopic survey more than
one order of magnitude larger than any previous study, measuring 7000 spectra
in a 6 sq.deg. area as part of our study of the Fornax Cluster. In this article
we describe the public release of 3600 spectra from our first field. We hope
that this public release will encourage colleagues making surveys for rare
objects to choose these fields, as much of the follow-up spectroscopy that
might be required is available from our data.Comment: To appear in the AAO Newsletter. Data online at
http://astro.ph.unimelb.edu.au/data
Time-Reversal Violating Schiff Moment of 225Ra
We use the Skyrme-Hartree-Fock method, allowing all symmetries to be broken,
to calculate the time-reversal-violating nuclear Schiff moment (which induces
atomic electric dipole moments) in the octupole-deformed nucleus 225Ra. Our
calculation includes several effects neglected in earlier work, including self
consistency and polarization of the core by the last nucleon. We confirm that
the Schiff moment is large compared to those of reflection-symmetric nuclei,
though ours is generally a few times smaller than recent estimates.Comment: Typos corrected, references added, minor changesin text. Version to
appear in PRC. 10 pages, 4 figure
- …