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We use the Skyrme-Hartree-Fock method, allowing all symmetries to be broken, to calculate the time-
reversal-violating nuclear Schiff momefiwhich induces atomic electric dipole momenis the octupole-
deformed nucleus®®Ra. Our calculation includes several effects neglected in an earlier work, including
self-consistency and polarization of the core by the last nucleon. We confirm that the Schiff moment is large
compared to those of reflection-symmetric nuclei, though ours is generally a few times smaller than recent

estimates.
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. INTRODUCTION 1 5
S= 0 d3rpch(r)( r2— §rch) r, (1)

Experiments withK and B mesons indicate that time-
reversal invariancgT) is violated through phases in the o
Cabibbo-Kobayashi-Maskawa matrix that affect weak inter-wherep, is the nuclear charge density ani;l, is the mean-
actions[1]. The suspicion that extra-standard-model physicssquare charge radius. Recent padér3] have argued that
e.g., supersymmetry, also violatEfias motivated a different because of their asymmetric shapes, octupole-deformed nu-
kind of experiment: measuring the electric dipole momentglei in the light-actinide region should have collective Schiff
(EDMs) of the neutron and atoms. Because any such dipol&yoments that are 100-1000 times larger than the Schiff mo-
moment must be proportional to the expectation value of th&nent in ***Hg, the system with the best experimental limit
T-odd spin operator, it can only exist wh@r(and parity,P) ~ On its atomic EDM[4]. Referencd8] suggested that .certain
is violated[2,3]. So far the experiments have measured ndhany-body effects may make the enhancement a bit less than
dipole moments, but they continue to improve and even nulfhat. The degree of enhancement is important because sev-

results are useful, since they seriously constrain new physicEral experiments in the light actinides are contemplated,

Whatever the experimental situation in the future, thereforeP]anned’ or underwa$9,10]. Even if they do not see EDM's

it is important to determine theoretically what the presenceW:r:’d'"W?t?]e;ijn:gskggvr:] 23\]’; rtgi'ré'lfrrr'::n?g'v'c’lat'on com-
or absence of EDMs at a given level implies about” P ’

T-violating interactions at elementary-particle scales. Our fo- Perhaps the most interesting octupole-deformed nucleus
9 . y-p " for an experiment is?*Ra. Though radioactive, it has a
cus here is on atoms, which for some source$ gfolation

| ide limi dorb h h ground-state angular momentudn=1/2, which minimizes
currently provide limits as good or better than the Neutrony,q eftect of stray quadrupole electric fields in an experiment

[4]. ) to measure a dipole momehtn addition, the associated
One way an atom can develop an EDM is throdgand  5t0m has close-lying electronic levels of opposite parity and
P violation in its nucleus. Let us assume that given a fundais rejatively easy to trap and manipulate. As a result, at least
mental source of the broken symmetry, one can use effectivgsne group is at work on a measuremenffRa[10]. Here,
field theory and QCD to calculate the strength of the resultwe calculate its Schiff moment, attempting to incorporate the
ing T-violating nucleon-pion interaction. One then needs toeffects discussed in R¢B] through a symmetry-unrestricted
connect the strength of that interaction to the resultingmean-field calculation. We begin the following section by
nuclear “Schiff moment,” which, because the nuclear EDM describing the physics of the Schiff moment in octupole-
is screened5], is the quantity responsible for inducing an deformed nuclei, briefly reviewing prior work in the process.
EDM in electrons orbiting the nucleus. The Schiff momentisin Sec. Ill, we test our mean-field approach by calculating
defined classically as a kind of radially weighted dipole mo-properties of even Ra isotopes. In Sec. IV, we discuss issues
ment: peculiar to mean-field calculations in odd nuclei and then
present our results for the Schiff moment‘6PRa, focusing
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particularly on the degree of enhancement. Section V is avhere AE=55 keV. The small denominator is part of the

brief conclusion. reason for the enhancement of the Schiff moment. The other
part is the matrix element of the Schiff operator in Eg). In
Il. ENHANCEMENT OF SCHIFE MOMENTS IN the limit that the deformation is rigid, the ground state and
OCTUPOLE-DEFORMED NUCLEI—PREVIOUS WORK first excited state in octupole-deformed nuclei are partners in

a parity doublet, i.e., projections onto good parity and angu-
In analogy with dipole moments in atoms, static Schiff lar momentum of the same “intrinsic state” that represents
moments in nuclei can exist only i is broken. Because the wave function of the nucleus in its own body-fixed
T-violating forces are much weaker than the strong interacframe. The matrix elements in E(p) are then proportional
tion, the Schiff moment can be accurately evaluated througlagain, in the limit of rigid deformationto intrinsic-state

the first-order perturbation theory as expectation values, so thgg]
2 (W ol S| Wi )(Wi|Vpr| W) J (S} Ve
S=(¥ Yoy = +c.c., o~ \ZHATPT
< 0|SZ| 0> i;o EO_ Ei S 2J+ 1 AE ’ (6)
2

. ) . wherelJ is the ground-state angular momentum, equal to 1/2
where| Vo) is the member of the ground-state multiplet with ¢, 2253, 4 the brackets indicate expectation values in the

J;=J70, the sum is over excited states, &ds the opera-  jinsic state. The intrinsic-state expectation va() is

tor, generated by the collective quadrupole and octupole defor-
mation of the entire nucleus; it is much larger than a typical
. e 5 : : : :
§=— E (rz_ —rzh)z , 3) matrix element in a.spherlcal or symmetrically _deformeq
104 \'P 3P nucleus. Together with the small energy denominator, this
large matrix element is responsible for the enhancement of
with the sum here over protons. The opera@'QrT is the T- laboratory-frame Schiff moments in nuclei such?Ra.
(and parity) violating nucleon-nucleon interaction mediated ~ The amount of enhancement is not easy to calculate ac-
by the pion[11,12] (shown to be more important than other curately, however. The reason is that the matrix element of
mesons in Ref[13)): the two-body spin-dependent operatdp; in Eq. (5) de-
pends sensitively on the behavior of a few valence particles,
. which carry most of the spin. In the approximation that par-
JoT1" T2 ticles (or quasiparticlesmove in independent orbits gener-
ated by a mean field, the potential can be written as an ef-
fective density-dependent one-body operator that we will

denote ad)pr, defined implicitly by

2
g mz;

87TmN

VPT(rl_rz):_ (o1—0)-(ry—rp)

g — .
- ?(le"‘ T22) T 92(371,72,— 71 T2)

_%(0'1+ 0'2)'(r1_r2)(7'12_ 7'22)] <a|0PT|b>:CZF <ac|\’\/PT|bC>! (7)
y exp—m|r;—ry)) [ 1 } where|a), |b), and|c) are eigenstates of the mean field and
m,|r —r,/? ma|ri—ral )’ the matrix elements of/p; are antisymmetrized. With the

4) further approximation that the mass of the pion is very large,
Upr can be written as a local operator, in a form we display
trons,my is the nucleon mass, and we are using the conven- The authors of Refd6,7] used a version of the particle-
tion i=c=1. Theg’s are the unknown isoscalar, isovector rotor model[14] to represent the odd- nucleus. In this
and isotensof-violating pion-nucleon couplings’ anglis " model, all but one of the nucleons are treated as a rigid core,
the usual strongrNN coupling ’ and the last valence nucleon occupies a deformed single-

In a nucleus such a&®Hg, with no intrinsic octupole particle orbit, obtained by solving a Schiinger equation for

deformation, many intermediate states contribute to the surf Nilsson or deformed Woods-Saxon potential. The model

in Eq. (2). By contrast, the asymmetric shape BfRa im- implies that the core carries no intrinsic spin whatever, that
pliesq';he -exi)s{tence of;avery Igw-enernyZ‘)pstate in this the neutron and proton densities are proportional, and that
case 55 keV above the ground stértﬁ())EIl/Z*S that the exchange terms on the rlght-rland side of Eq.are
dominates the sum because of the corresponding small d8€gligible. Under these assumptiongpy, which now acts
nominator. To a very good approximation, then, only on the single valence nucleon, reduce$15]

_ (U2N|§] 12 ) (127 |Veq] 1127)
- AE

. G
+cc., (5 UPT(F)%ﬂmﬂ'VPo(f), 8
N
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whereG is the Fermi constant, inserted to follow convention, Our approach is nonrelativistic and employs Skyrme in-
and py is the total nuclear mass density. The dimensionlesseractions. To get an idea of the range of results this kind of
parametery is then a function of the couplin@ and the calculation can produce, we use four different parametriza-
isospin of the nucleus. tions of the Skyrme energy functional, i.e., four different

Reference 8] confirmed the collectivity of the intrinsic Skyrme forces. These four parametrizations give similar re-
Schiff moments obtained in Reff5,7], but questioned the sults for many observables near stability, but still have sig-
accuracy of some of the assumptions used to evaluate theficant differences. Our favorite interaction, for reasons ex-
matrix element of/p, suggesting that either core-spin po- plained below, is SkO[17,18, but we also show results for
larization or self-consistency in the nuclear wave functionthe commonly used forces SIIL9], SkM* [20], and SLy4
might reduce laboratory Schiff moments. The zero-range ap21].

proximation and the neglect of exchange U are also
open to question. As a result, it is not clear whether the B. Related observables in even isotopes
Schiff moment of??°Ra is 1000 times that ot**Hg or 100
times, or even less. In what follows, we provide @enta-
tive) answer by moving beyond the particle-rotor model. Our,
calculation is not the final word on Schiff moments in
octupole-deformed nuclei—we only consider mean-field
theory, neglecting in particular projection onto states with
good parity, and do not fully account for the pion’s nonzero
range — but is a major step forward.

Intrinsic-parity breaking in even radium isotopes is the
subject of several theoretical analyses; see the review in Ref.
[22] and the more recent studies in R€f23,24]. To assess
the ability of the Skyrme interactions to handle it, we per-
form a series of Hartree-FodkF) + BCS calculations for
even radium isotopes. We use the Skyrme+HECS code
from Ref.[25]; it represents single-particle wave functions
on an axially symmetric mesh, and uses Fourier definitions
of the derivative, I/,, and 1f? operators. We choose 75
I1l. MEAN-FIELD CALCULATIONS FOR OTHER Ra grid points in thez direction and 27 in the, (perpendicular

ISOTOPES direction, with 0.8 fm between them. The code uses a
density-independent zero-range pairing interaction with a
self-adjusting cutoff as described in RdR6]. For each

Self-consistent mean-field theory is widely used for de-Skyrme force we adjust the pairing strength separately for
scribing bulk properties of nuclejl16]. In the guise of protons and neutronf26]. We should note that other self-
density-functional theory, it is also used throughout atomicconsistent mean-field models, namely, HBCS with the
and molecular physics. The approach is more “microscopic’nonrelativistic Gogny forc¢27] and the relativistic mean-
— nucleons are the only degrees of freedom — and far lesfeld model[28], yield results that are similar to those we
phenomenological than the collective particle-rotor modeldescribe now.

Self-consistency connects the single-particle states and the Figure 1 illustrates the calculated evolution of intrinsic
actual density distribution. The variational principle that de-deformation with increasing neutron number in the radium
termines the single-particle wave functions thus optimizes alisotopes. It shows a plot of the intrinsic ground-state mass-
multipole moments not fixed by global symmetries. The den-density contours predicted by SkOrhe mean-field ground
sity distributions of neutrons and protons are not proporstates go from having a spherical shape at the magic humber
tional to each other; they have slightly different deformationsN=126 to a quadrupole-deformetteflection-symmetric

and radial profiles. In odd- nuclei, self-consistent calcula- shape atN=130, then to quadrupole+octupole-deformed
tions include rearrangement due to the unpaired particle. Réreflection-asymmetricshapes for 132 N<140, and finally
arrangement causes polarization of the eecere through back to quadrupole-deformed shapes at higheBecause
orbital-current and spin-density terms in the effective interthe ground states are obtained from a variational principle,
action. Core polarization is one of the effects on the Schiffall shape moments higher than octupole are also optimized
moment of??>Ra which we investigate below. (the isoscalar dipole moment is constrained to be )zéroe

A. Mean-field calculations
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ration energies are also shown.
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FIG. 3. The predicted first-orddi29] octupole deformations
(top), intrinsic dipole momentgmiddle) and intrinsic Schiff mo-
ments(bottom for four Skyrme interactions in a series of evdn-
%adium isotopes. The experimental intrinsic dipole moments are

ity distributi d th . i also shown. Where symbols are missing, the corresponding pre-
the density distribution around the saturation val a dicted values are zero because the mean field is not asymmetrically
given neutron excegsaused by shell effects. deformed.

We must note that the octupole-deformed minima are not
equally pronounced for all forces and isotopes. In addition=0.105(4) forN=138, a value that can be deduced from the
in some of the isotopes with reflection-symmetric minima,B(E3;0; —3;) given in Ref.[30]. (In ?*Ra and?*Ra, by
some of the Skyrme forces predict an excited octupolethe way, we agree fairly well with the quadrupole moments
deformed minimum separated by a small barrier from theobtained fromB(E2)'s in Ref. [31]. For example, SkO
ground-state minimum. Furthermore, in the transitional nugives 3,=0.184 in ??)Ra and experiment gives3,
clei, which have soft potentials in the octupole direction, all=0.1794).)
parity-breaking intrinsic deformations are subject to collec- The second panel in the figure shows the absolute values
tive correlations as discussed in REZ7]. The influence of  of intrinsic dipole momentD,=eX(z,), along with ex-
correlations will be the smallest for the nuclides with the perimental data extracted frofl transition probabilities
most pronounced octupole-deformed minima, usu&ffRa  [22]. The calculated values f@, change sign from positive
and #*"Ra. This fact supports our belief that our mean-fieldto negative betweeN =134 andN=138, reflecting a small
calculations supply a good approximation to the intrinsicchange in the location of the center of charge from the “top”
structure in?*Ra. half of the pear-shaped nucleus to the “bottom” half. This

Figure 2 shows the relative error in the predicted bindingpredicted sign change is consistent with the near-zero experi-
energiesoE = (Ecqc— Eexpd/ Eexpt fOr all four forces, and the  mental value folN=136. None of the forces precisely re-
predicted two-neutron separation energies, along with thgroduces the trend through all the isotopes, but the compari-
measured values. All the forces do a good job with bindingson has to be taken with a grain of salt because “data” derive
which is not surprising given the way their parameters wergrom transitions between excited rotational states and, there-
fit. The fact that the error in binding for SK@s nearly con-  fore, are not necessarily identical to the ground-state dipole
stant withN for N> 130 is reflected in the near perfect agree-moments. Cranked Skyrme-HF calculations without pairing
ment in the bottom panel with the measured two-neutrorcorrelations[24] and cranked HFB calculations with the
separation energieS,,. The errors in predicted values of Gogny force[23] predict that for most Ra isotope®,
S,, around N=128 probably reflect the deficiencies of changes significantly with angular momentum. In any event,
mean-field models in transitional nuclei. as thoroughly discussed in R§22], the intrinsic dipole mo-

Figure 3 shows three parity-violating intrinsic quantities. ment is a small and delicate quantity.
In the top panel is the ground-state octupole deformation The intrinsic Schiff momentS,), the quantity we are
B3=4m(rY;)/(3AR®) (whereR=1.2A%) as a function of  really interested in, is more collective and under better con-
neutron number. The trend mirrors this in the density profilesrol, as the bottom panel of the figure shows. The various
shown earlier. AN=136, one less neutron than ##°Ra, all  predictions are usually within 20% of one another and large,
the forces predict almost identical octupole deformation, aonfirming the predictions originally made in Ref$,7].
result we like. Experimental data for octupole moments areThe octupole deformation and intrinsic dipole moment have
still sparse in this region; we are only aware @4 been shown to change only slightly with parity projection

nucleus®®Ra, with N=137, will clearly be well deformed
in both quadrupole and octupole coordinates. The structur
at small radii visible folN=132 reflect small oscillations of
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larization. In fact, a self-consistent odd-calculation is

-3 224 n

4 -_éﬁ \—“amp—Eell | equivalent to first performing the calculation in the even-
%\ =L 3/2>\_5//;/gg_- even nucleus with one less neutron, and then placing the last
= b i ] nucleon in the first empty orbit and treating its polarizing
= 6 k32 3/2 . -
& F /2] effect on the core in random-phase approximafidg,33.

=%
7 L2 1/2 | i X . i
T 1/2w1/2 ] Fully self-consistent calculations take all kinds of polariza-
8+ 4

tion into account simultaneously. For us, the spin polariza-

-3 — o . .
- s N= 32 ] tion is of particular interest.

-4 |3 1/2 L . )
L 172 72 1 To proceed here we use the public-domain Skyrme

=D 72 5/2

=z ot 32 s Hartree-Fock codeiFopD (v2.04h [34-34, which allows
=6 T”Qﬁggi the mean-field and the associated Slater determinant to si-
§-7 f??g 32 ] multaneously break invariance under rotation, reflection
8+ 1/23#1?2 5 through three planes, and time reverdbe code we used in
o L= — A= the last section does noBreaking the first is necessary to
g & = % describe a deformed nucleus. Breaking all the three reflec-

tions (and not only parity is necessary to represent axial

FIG. 4. Single-particle spectra for protof®p) and neutrons octupole deformation with the spin aligned along the sym-

(bottom in ?24Ra for the four Skyrme interactions. metry axis. Breaking the last induces spin polarization in the
core, which because of Kramers degeneracy cannot other-

from the intrinsic state§23], and the same is probably true WiS€ occur. Incorporating spin polarization is important be-
of the intrinsic Schiff moment. cause it has the potential to significantly alter the matrix

By turning the pairing force off, we are able to seeelement ofUpyin Eq.(8) from its value in the particle-rotor
whether the parity-violating quantities in Fig. 3 are affectedmodel, where the spin is carried entirely by one valence par-
by pairing correlations. Ir**/Ra, for example, SkOgives ticle. The codeiFoDD cannot yet treat pairing when it allows
B3=0.141, Dy=—0.103efm, and(S,)=34.4efm® with- T to be broken, but pairing if-odd channels is poorly un-
out pairing, andB3;=0.143, Dy=—0.093efm, and (S,) derstood. No existing codes can do more thaobD in odd-
=34.3efm?® when pairing is included. In this nucleus uncer- A octupole-deformed nuclei.
tainties related to pairing are very small. As stated above, we use the Skyrme interactions SllI,

Finally, in Fig. 4, we show the predicted proton and neu-SkM*, SLy4, and SkO. The reason SkQis our favorite has
tron single-particle spectra generated by the ground-staf® do with the part of the energy functional composed of
mean-field in??Ra. The combination of quadrupole, octu- T-0dd spin densitieéwhich, following common practice, we
pole, and higher deformations reduces the level densityefer to as the T-odd functional,” even though the entire
around the Fermi surface for both kinds of nucleon, leadingunctional must be even under).TThe T-odd functional
to significant deformed& =88 andN= 132 shell closures for plays no role in the mean-field ground states of even nuclei,
all interactions, and a somewhat weakér 136 subshell but can be important in any state with nonzero angular mo-
closure for Slil, SkM*, and SkQ The small level density mentum. Of the forces above, only Skas been seriously
around the Fermi surface might explain the insensitivity ofinvestigated inT-odd channels. In Ref17], the T-odd part
the deformation to pairing correlations mentioned above. Foff the functional was adjusted to reproduce Gamow-Teller
all the forces except Sk the first empty neutron level resonances, resulting in an effective Landau paramgger
clearly hasj,=1/2, implying that in??*>Ra the ground-state =1.2. In the isoscalar channel, the force was adjusted to
parity-doublet bands will be built 0d™=(1/2)* states. For reproduce the commonly used valgg=0.4[37]. Although
SkM*, the situation is less clear because fie 1/2 and 3/2  there are not enough data to constrain other relevant param-
states are nearly degenerate, and it is necessary to carry cfers in the functional, and although a very recent calculation
the calculation i’?*Ra itself to see which becomes the low- Starting from a realistic nucleon-nucleon interacti88],

est. while confirming the valugyy=1.2, findsgo=0.85, SkO is
clearly the best available Skyrme interaction for describing
IV. CALCULATING THE SCHIFF MOMENT OF 22°Ra spin-spin interactions. The correspondif@dd terms in the
. ) . . functional are precisely those that will polarize the spin in
A. Odd-A nuclei and Schiff moments in mean-field the core. There are other terms that could be added to the
approximation standard Skyrme interaction and do the same thing—the ten-

Fully self-consistent calculations in oddnuclei are pos-  sor force, for example—but they are almost never used and
sible, but seldom performed. For many physical observableteir effects still need to be investigated.
it is enough to neglect correlations between the odd particle The parameters of the other three forces SliI, 3kNind
and the core, which amounts to dropping a valence particl®Ly4 were adjusted entirely to ground-state properties in
into the field generated by that core. Other quantities, howeven-even nuclei, and so the Landau parameggrand g,
ever, are sensitive to the interaction between the last particlere not fit. Here, we set them to zero by treating Thedd
and the core. The interaction can change the deformation arehd T-even terms in the Skyrme functional independently, as
the pairing strength, and produce various kinds of core podescribed in Ref.17]. Only orbital terms, which are fixed by
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TABLE I. The intrinsic Schiff moment, in units o fm® and the intrinisic-state expectation values of
operators in Eq(10), in units of 102 fm*.

(8) (o7m:Vpy) (o7 Vpy) (o Jo) (o-J1) (o7:Jg) (o7 d1)

SlI(0) 34.6 —1.081 —0.087 —1.047 0.162 —1.049 0.159
SkM* (0) 46.6 —0.730 —0.497 —1.043 0.099 —1.042 0.085
SLy4(0) 43.4 —0.676 —0.578 —1.303 —0.016 —1.299 —0.019
SkO'(—) 41.7 —0.343 —0.318 —1.149 0.030 —1.149 0.030
SkO' 41.7 —0.467 —0.227 —0.476 0.014 —0.526 0.014
Referencd 6] 24 -2 —-0.4
gauge invariancg39] (a generalization of Galilean invari- A L
ance, appear in thel-odd parts of these forces. Upr(r)— — > {2 072 [(Qot292) Vpy(r)
We rely on the crudest forms of projection. For parity, that mzmy (=1
means none at all, and for angular momentum it means in- 1A
serting the rigid-rotor factod/(J+1)=1/3 in front of the —91Vpo(N]+ = > - [(—3de+717,:)do(r)
intrinsic Schiff moment, as described above. In other words, 2= '

we use Eq(6) with the intrinsic state taken to be the Hartree-

Fock ground state produced byroDD. Just as in the +(51+E)Tzi_4§27.zi)\]1(r)]]_ (10)
particle-rotor model, the intrinsic Schiff moment is given by ' ’

the classical expression, Ed), but with p, equal toetimes

the Hartree-Fock ground-state proton density. As alreadydere,J(r) is the “spin-orbit” current, defined, e.g., in Ref.
mentioned, the Hartree-Fock approximation allows us, byf17], and references therein, and the subscripts 0 and 1 refer
summing over occupied orbits, to write the intrinsic matrix to isoscalar and isovector combinations as they do for the

element of the two-body potentidlpr as the expectation density. The terms i p7 that containd are the exchange

value of an effective one-body operatdit. Because we tﬁrmsho_rmttf?d above. W?) V\g:l evalu”atehthen;], bfl_Jt_argue Iatgr
now have a microscopic version of the “core,” this effective that their effects are probably small when the finite range Is

potential is more complicated than in E&), and it now acts restored. The terms containing the dengitgll result from

on all the nucleons: the direct part of/p7. We do not simplify things further to
obtain something like Eq#8), because, is not really pro-
A 2 i r—r'] p(_)rtlonal top,, and the core nucleons do carry some spin. We
Ooem g 2 o "Vf 43 mze -7 will manage nevertheless, to compare our results with those
TomZmy St 4arlr—r'| of Ref. [6]. We will also estimate the effect of a finite pion

range on the direct terms, though our inability to do so more
X[(go+29,)p1(r')—g1po(r')]+exchange. (9)  Precisely at present is the most significant shortcoming of
this work.
HFODD works by diagonalizing the interaction in the
Here, po(r) = pn(r) + pp(r) andpy(r)=pn(r) — pp(r) are the eigenbasis of an optimal anisotropic three-dimensional har-

isoscalar and isovector densities. The part resulting from exnonic oscillator. For "Ra, algorithms developed in Ref.
h ¢ in th ivinal two-bodv int i | 34] give oscillator frequencies of w,=7.0625 andiw,
change terms in the original two-body Interac 'W’_T IS"  —8.6765 MeV in the directions parallel and perpendicular to
nonlocal, just as in the usual Hartree-Fock mean field, an

we have not written it explicitly her&hough we do beloy %e elongation axis. The matrix element Upy converges

only slowly as we increase the number of levels in the basis.
The codeHFODD at present cannot evaluate the expectas

tion value of a folded potential like the one above, which isWhen the interaction polarizes the core, it takes 2500 or

. ; ; more single-particle basis states to get convergence. The ba-
due to the finite pion range. Nevertheless, even in the zer giep g g

S ; %is then contains up td,=26 andN, =21 oscillator quanta.
range approximation we can avoid several of the

assumptions—proportionality of neutron and proton densi-

ties, negligibility of exchange terms, and absence of core B. Laboratory Schiff moment of *Ra

spin—leading to the extremely simplified potential in Eq.  We turn finally to results in?*Ra itself. For SkO, our

(8). The zero-range approximation is equivalent to assumingiropp calculations yield3,=0.190, 8;=0.146, andf,
that the pion is very heavy, so that the term involving the=0.136 for the usual first-order approximation to the defor-
pion mass in Eq(9) becomes & function. Under this as- mation parameters determined from mass multipole mo-
sumption, but none other, the exchange terms become locaients[29]. The laboratory Schiff moment, Eg6), is pro-

and U takes the form portional to the product of the intrinsic Schiff momdrﬁz)
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and the expectation Vall(é/PT> Table | shows the intrinsic TABLE II. Intrinsic-state expectation values of important matrix
P/ . i ) i units offlen- 4
moments and the expectation values of the six operators thlements, in the neutron-proton scheme, in units of"Ifn .

enter the zero-range approximation\fgr in Eq. (10). Be- (0-Vpr) (0,-Vpy)
fore commenting on the entries, we mention what is in each non nore
of the forces and calculations. SI(0) -0.577 —0.491
For all the forces, terms in the functional that are propor-Skm* (0) —0.619 —0.120
tional to Laplacians of spin densities-(As) and density-  SLy4(0) —-0.628 —0.050
dependent spin-spin term§(p)s- s), cf. Refs.[17,39 which  SkO'(—) -0.331 —-0.013
enter through th@-odd part of the Skyrme functional, have sko —0.320 -0.114
been turned off. For the first three rows in Tablgfdrces  Referencd6] 12 -08

labeled with(0)], the spin-spin terms have also been turned
off, so that the only nonzero terms in tlieodd functionalas
noted abovgare those required by gauge invariance. For theexchange to direct contributions almost always ended up
fourth row[SkO'(—)], all T-odd terms in the functional have small. Similar behavior was found for parity-violating forces
been turned off, so that aside from the self-consistency in then Ref. [41], where it was traced in part to the different
wave functions the calculation resembles one with a pheaverage momenta carried by the pion in direct and exchange
nomenological (non-self-consisteit potential, for which graphs. So that we can compare our results with those of Ref.
T-odd mean fields are never considered. We include this rg6], we will neglect the exchange terms from now on, though
sult so that we can distinguish the role played by core polarwe caution that this step should eventually be justified more
ization. The results in the line labeled Ski@clude the time-  rigorously, e.g., by actually calculating them with the finite-
odd channels, adjusted as discussed alpave This is the range force in the full mean-field model. The reduction we
force in which we have the most confidence. The last entry isee in the direct terms is in line with the results of Rég£],
the result of Ref[6], with the implicit assumption that the though we find it more variabfe.
neutron and proton densities are proportional. Though we cannot yet be more quantitative about finite-
In our calculations, the intrinsic Schiff moments are closerange effects, we do quantify the core polarization in Table I.
to one another, and all are less than twice the estimate of Reffor the first three rows of the table, where the forces are
[6]. The agreement reflects the collective nature of these inlabeled(0), the spin-spin terms are absent from the energy
trinsic moments; they are even larger than the particle-rotofunctional, and the protons in the core develop only a small
estimates. But the matrix elements 6§, the other ingre- ~ SPIn density from thd-odd terms required by gauge invari-
dient in Eq.(6) for the laboratory Schiff moment, are a bit ance. For the fourth row, SKG—), all T-odd terms are ab-
more delicate. Our results show the exchange terms on tHent and the protons can have no spin at all. This means that
right side of the table to be comparable to the direct terms, $he operatord (r)o- and f(r) o have either the same or al-
result that is surprising because for a spin-saturated @sre Most the same expectation value for diy) so that columns
in the particle-rotor modglthe exchange terms vanish ex- 4 and 6 (o Jo) and(a7-Jy)) have identical or nearly iden-
actly. We think, however, that the ratio of exchange to directical entries for these forces, and so do columns 5 and 7
terms would become small, were the finite range of the in{(o-J;) and(e7-J;)). The fifth row of the table contains
teraction reintroduced and short-ranlyé\ correlations in-  the effects of spin polarization, which are primarily to alter
serted. the neutron-spin density; the equalities between the columns
Though unable to include either effect here, we did so inare not badly broken, so the protons do not develop much
a Nilsson model for?Ra. We took nucleons there to occupy SPin. The same is true of the terms involvipgthough that
independent single-particle levels generated by a deformei§ not obvious from the table because we display only the
oscillator potential with 8,=0.138, 8;=0.104, andpB, two terms that appear in EGLO).
=0.078, values taken from Rdi6]. We then evaluated the These near equalities and the probable irrelevance of the
ground-state expectation value of the full two-body interac-exchange terms when the finite range is taken into account

tion Vpr, with and without the zero-range approximation MPY fh"’_‘t only the wagt't'ﬁ”n':l’n ‘?‘nflj_‘rgl' Vlprare ul—f
(and in the latter case, with short-range correlations includedMately important. We display them in Table Il. Except for

in the manner of Ref40]). In this simple model, the valence IHi, the nﬁUtron-derr]lsny r(]Jllstrlk;utlon affecés the matrix elﬁ'
nucleon carries all the spin, and only the neutron-proton an ent much more than that of protons. By comparing the

- . . ourth and fifth rows, however, we see that spin correlations
neutron-neutron parts &fp1 contribute. The direchp term

shrank by a factor of 1.5, while the corresponding exchan increase the role of the protons, while reducing that of the

9%eutrons slightly. Thus, while the spin-spin interactions do
term shrank by a factor of 14(®oth independent of thg's
in Eqg. (4), it turns ouj when the range of the interaction was
set to its proper value. The results in the channel were  2we performed another test, using the direct part of €6) with
less dramatic: the direct part again shrank by 1.5 and théhe valence wave function taken from the Nilsson model just de-
exchange part by a factor of 5. When we moved the valencecribed, but with the neutron and protons densities assumed to have
neutron to higher orbits, these numbers changed some—thgore realistic Woods-Saxon forms. The direct terms were again
direct terms sometimes were not suppressed at all and othetippressed by factors of 1.5 to almost 10 that depended signifi-
times shrank by factors of up to 6, but the ratios of thecantly on the valence orbit.
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not cause the protons to develop much net spin, they dgDM of ?*Ra is about three times that of the Schiff mo-

correlate the neutron spin with the proton density. ment, i.e., potentially more than 1000. We again caution,
There is not too much scatter in our results. The entries imowever, that we have yet to include the full finite-range

the second column(r7- V po)) of Table | differ by factors yersion ofV,r, and that our preliminary investigations sug-

of 2 or 3, and the entries in the third¢7-Vpy)) by alittle  gest that doing so will decrease our Schiff moment at least a

more, though they are all smaller than those in the seconfiyie. |ronically, Ref.[43] finds that including the finite range

column (which is not surprising—the third column subtracts actually increases the matrix elementlittHg, though only

the neutron and proton densities, while the second add§1ightly.

them. In the neutron-proton schenf@able II) all of our We hope to make other improvements in our calculation

numbers are smaller than those of Réfl, a result that was 55 well. Projection onto states of good parity will change the

anticipated in Ref[8]. The difference from the earlier esti- (agyits a bit, as will angular momentum projection. Our con-

mate for the larger matrix elements ranges from factors of Zsjons about the size of spin-polarization corrections could

to 4, though the isovector combination—the third column inpe mogified by two terms in the Skyrme functional that we

Table I—is sometimes actually enhanced a little. have set to zero, or by a better determined value of the Lan-
What, at last, have we to say about the real laboratoryja, parameteg,. Whatever the result of such corrections,

Schiff momentS? The lab moment is given by the product of p\vever, it is clear that the atomic EDM 3#%Ra will al-

the matrix elements just discussed, the intrinsic Schiff MOways be significanlty larger than that 6%%Hg.

ments, and the unknown coefficiems. Our intrinsic Schiff

moments are about 1.5 times larger than those of F&f. V. CONCLUSIONS

while ourVp matrix elements, in the zero-range approxima- We have calculated the Schiff moment #%Ra in the

tion, are smaller than theirs, usually by a somewhat largeg o oyimation that th@-violating interaction has zero range.
amount. Overall, our lab moments will usually be smaller byq, - caiculations, which are self-consistent and include core
factors between about 1.5 and 3 than the estimates of ®ef. ,5|a1ization, give results that are generally just a few times
(an exception can occur if for some reagpris considerably  smaller than earlier estimates based on the particle-rotor
less than the other two coefficients model. Accepting the very recent results of Ref3], we
How large are our moments compared to that'&Hg?  currently find the Schiff moment of?Ra to be(generically
The most comprehensive calculation in that nucleus, whickeveral hundred times that 81°Hg, a result that strengthens
appeared very recentfy3], improved on the work of Ref. the case for an atomic-EDM experiment in Ra, though the
[44] by including the effects of the residual strong interactionenhancement factor depends significantly on the sourde of
and the full finite-range form foWpr. The new results are violation, and we expect it to decrease at least a little when
smaller than that of Ref44], only slightly so for the isovec- we use the finite-range force. Work towards including a finite
tor part of Vpr, but by a considerable amount in the isosca-fange inHFODD is in progress. We also plan to apply the
lar and isotensor channels. The authors write their results if€lf-consistent methods used here to other light actinides, as
terms of the pion-nucleon couplings as well as to 1%Hg, where we suspect octupole correlations
may play some rold8]. Maintaining self-consistency in
Syg=0.00041go+0.058g; +0.009yg, (efm?). (11) 19%g should automatically control the spurious Schiff
strength encountered in R¢#3]. The source of the insensi-
Our result for radium, with the zero-range approximation andivity of the Schiff moment toT violation in the isoscalar

exchange terms neglected, translates to channel in that work should be checked and understood.
_ _ _ After many years of neglect, the question of which iso-
SRa” 9% —5.06990 + 10.499,— 10.19g, (efm®). topes are the best for EDM measurements is now being rap-

(120 idly addressed.
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