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Time-reversal violating Schiff moment of 225Ra
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We use the Skyrme-Hartree-Fock method, allowing all symmetries to be broken, to calculate the time-
reversal-violating nuclear Schiff moment~which induces atomic electric dipole moments! in the octupole-
deformed nucleus225Ra. Our calculation includes several effects neglected in an earlier work, including
self-consistency and polarization of the core by the last nucleon. We confirm that the Schiff moment is large
compared to those of reflection-symmetric nuclei, though ours is generally a few times smaller than recent
estimates.
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I. INTRODUCTION

Experiments withK and B mesons indicate that time
reversal invariance~T! is violated through phases in th
Cabibbo-Kobayashi-Maskawa matrix that affect weak int
actions@1#. The suspicion that extra-standard-model phys
e.g., supersymmetry, also violatesT has motivated a differen
kind of experiment: measuring the electric dipole mome
~EDMs! of the neutron and atoms. Because any such dip
moment must be proportional to the expectation value of
T-odd spin operator, it can only exist whenT ~and parity,P)
is violated @2,3#. So far the experiments have measured
dipole moments, but they continue to improve and even n
results are useful, since they seriously constrain new phy
Whatever the experimental situation in the future, therefo
it is important to determine theoretically what the presen
or absence of EDMs at a given level implies abo
T-violating interactions at elementary-particle scales. Our
cus here is on atoms, which for some sources ofT violation
currently provide limits as good or better than the neut
@4#.

One way an atom can develop an EDM is throughT and
P violation in its nucleus. Let us assume that given a fun
mental source of the broken symmetry, one can use effec
field theory and QCD to calculate the strength of the res
ing T-violating nucleon-pion interaction. One then needs
connect the strength of that interaction to the result
nuclear ‘‘Schiff moment,’’ which, because the nuclear ED
is screened@5#, is the quantity responsible for inducing a
EDM in electrons orbiting the nucleus. The Schiff momen
defined classically as a kind of radially weighted dipole m
ment:
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2 D r, ~1!

whererch is the nuclear charge density andr ch
2 is the mean-

square charge radius. Recent papers@6,7# have argued tha
because of their asymmetric shapes, octupole-deformed
clei in the light-actinide region should have collective Sch
moments that are 100–1000 times larger than the Schiff
ment in 199Hg, the system with the best experimental lim
on its atomic EDM@4#. Reference@8# suggested that certai
many-body effects may make the enhancement a bit less
that. The degree of enhancement is important because
eral experiments in the light actinides are contemplat
planned, or underway@9,10#. Even if they do not see EDM’s
we will need to know how their limits onT-violation com-
pared with limits from other experiments.

Perhaps the most interesting octupole-deformed nuc
for an experiment is225Ra. Though radioactive, it has
ground-state angular momentumJ51/2, which minimizes
the effect of stray quadrupole electric fields in an experim
to measure a dipole moment.1 In addition, the associated
atom has close-lying electronic levels of opposite parity a
is relatively easy to trap and manipulate. As a result, at le
one group is at work on a measurement in225Ra @10#. Here,
we calculate its Schiff moment, attempting to incorporate
effects discussed in Ref.@8# through a symmetry-unrestricte
mean-field calculation. We begin the following section
describing the physics of the Schiff moment in octupo
deformed nuclei, briefly reviewing prior work in the proces
In Sec. III, we test our mean-field approach by calculat
properties of even Ra isotopes. In Sec. IV, we discuss iss
peculiar to mean-field calculations in odd nuclei and th
present our results for the Schiff moment of225Ra, focusing

1The statement that the nucleus has octupole and quadrupol
formation really refers to itsintrinsic state, a concept we elabora
on below, and does not contradict its insensitivity to applied elec
fields with multipolarity greater than one.
©2003 The American Physical Society01-1
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particularly on the degree of enhancement. Section V i
brief conclusion.

II. ENHANCEMENT OF SCHIFF MOMENTS IN
OCTUPOLE-DEFORMED NUCLEI—PREVIOUS WORK

In analogy with dipole moments in atoms, static Sch
moments in nuclei can exist only ifT is broken. Because
T-violating forces are much weaker than the strong inter
tion, the Schiff moment can be accurately evaluated thro
the first-order perturbation theory as

S[^C0uŜzuC0&5(
iÞ0

^C0uŜzuC i&^C i uV̂PTuC0&
E02Ei

1c.c.,

~2!

whereuC0& is the member of the ground-state multiplet wi
Jz5JÞ0, the sum is over excited states, andŜz is the opera-
tor,

Ŝz5
e

10 (
p

S r p
22

5

3
r ch

2 D zp , ~3!

with the sum here over protons. The operatorV̂PT is theT-
~and parity-! violating nucleon-nucleon interaction mediate
by the pion@11,12# ~shown to be more important than oth
mesons in Ref.@13#!:

V̂PT~r12r2!52
g mp

2

8pmN
H ~s12s2!•~r12r2!F ḡ0tW1•tW2

2
ḡ1

2
~t1z1t2z!1ḡ2~3t1zt2z2tW1•tW2!G

2
ḡ1

2
~s11s2!•~r12r2! ~t1z2t2z!J

3
exp~2mpur12r2u!

mpur12r2u2 F11
1

mpur12r2uG ,
~4!

where arrows denote isovector operators,tz is 11 for neu-
trons,mN is the nucleon mass, and we are using the conv
tion \5c51. The ḡ’s are the unknown isoscalar, isovecto
and isotensorT-violating pion-nucleon couplings, andg is
the usual strongpNN coupling.

In a nucleus such as199Hg, with no intrinsic octupole
deformation, many intermediate states contribute to the s
in Eq. ~2!. By contrast, the asymmetric shape of225Ra im-
plies the existence of a very low-energyu1/22& state, in this
case 55 keV above the ground stateuC0&[u1/21&, that
dominates the sum because of the corresponding smal
nominator. To a very good approximation, then,

S[2
^1/21uŜzu1/22&^1/22uV̂PTu1/21&

DE
1c.c., ~5!
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where DE555 keV. The small denominator is part of th
reason for the enhancement of the Schiff moment. The o
part is the matrix element of the Schiff operator in Eq.~5!. In
the limit that the deformation is rigid, the ground state a
first excited state in octupole-deformed nuclei are partner
a parity doublet, i.e., projections onto good parity and an
lar momentum of the same ‘‘intrinsic state’’ that represe
the wave function of the nucleus in its own body-fixe
frame. The matrix elements in Eq.~5! are then proportiona
~again, in the limit of rigid deformation! to intrinsic-state
expectation values, so that@6#

S→22
J

J11

^Ŝz&^V̂PT&
DE

, ~6!

whereJ is the ground-state angular momentum, equal to
for 225Ra, and the brackets indicate expectation values in
intrinsic state. The intrinsic-state expectation value^Ŝz& is
generated by the collective quadrupole and octupole de
mation of the entire nucleus; it is much larger than a typi
matrix element in a spherical or symmetrically deform
nucleus. Together with the small energy denominator,
large matrix element is responsible for the enhancemen
laboratory-frame Schiff moments in nuclei such as225Ra.

The amount of enhancement is not easy to calculate
curately, however. The reason is that the matrix elemen
the two-body spin-dependent operatorV̂PT in Eq. ~5! de-
pends sensitively on the behavior of a few valence partic
which carry most of the spin. In the approximation that p
ticles ~or quasiparticles! move in independent orbits gene
ated by a mean field, the potential can be written as an
fective density-dependent one-body operator that we
denote asÛPT , defined implicitly by

^auÛPTub&5 (
c,F

^acuV̂PTubc&, ~7!

whereua&, ub&, anduc& are eigenstates of the mean field a
the matrix elements ofV̂PT are antisymmetrized. With the
further approximation that the mass of the pion is very lar
ÛPT can be written as a local operator, in a form we disp
in Sec. IV. Evaluation of its matrix element is tricky.

The authors of Refs.@6,7# used a version of the particle
rotor model @14# to represent the odd-A nucleus. In this
model, all but one of the nucleons are treated as a rigid c
and the last valence nucleon occupies a deformed sin
particle orbit, obtained by solving a Schro¨dinger equation for
a Nilsson or deformed Woods-Saxon potential. The mo
implies that the core carries no intrinsic spin whatever, t
the neutron and proton densities are proportional, and
the exchange terms on the right-hand side of Eq.~7! are
negligible. Under these assumptions,ÛPT , which now acts
only on the single valence nucleon, reduces to@15#

ÛPT~r!'h
G

2mNA2
s•“r0~r!, ~8!
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FIG. 1. Contours of constan
density for a series of even-N ra-
dium isotopes. Contour lines ar
drawn for densitiesr50.01, 0.03,
0.07, 0.11, and 0.15 fm23.
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whereG is the Fermi constant, inserted to follow conventio
and r0 is the total nuclear mass density. The dimensionl
parameterh is then a function of the couplingsḡi and the
isospin of the nucleus.

Reference@8# confirmed the collectivity of the intrinsic
Schiff moments obtained in Refs.@6,7#, but questioned the
accuracy of some of the assumptions used to evaluate
matrix element ofV̂PT , suggesting that either core-spin p
larization or self-consistency in the nuclear wave funct
might reduce laboratory Schiff moments. The zero-range
proximation and the neglect of exchange inÛPT are also
open to question. As a result, it is not clear whether
Schiff moment of225Ra is 1000 times that of199Hg or 100
times, or even less. In what follows, we provide an~tenta-
tive! answer by moving beyond the particle-rotor model. O
calculation is not the final word on Schiff moments
octupole-deformed nuclei—we only consider mean-fi
theory, neglecting in particular projection onto states w
good parity, and do not fully account for the pion’s nonze
range — but is a major step forward.

III. MEAN-FIELD CALCULATIONS FOR OTHER Ra
ISOTOPES

A. Mean-field calculations

Self-consistent mean-field theory is widely used for d
scribing bulk properties of nuclei@16#. In the guise of
density-functional theory, it is also used throughout atom
and molecular physics. The approach is more ‘‘microscop
— nucleons are the only degrees of freedom — and far
phenomenological than the collective particle-rotor mod
Self-consistency connects the single-particle states and
actual density distribution. The variational principle that d
termines the single-particle wave functions thus optimizes
multipole moments not fixed by global symmetries. The d
sity distributions of neutrons and protons are not prop
tional to each other; they have slightly different deformatio
and radial profiles. In odd-A nuclei, self-consistent calcula
tions include rearrangement due to the unpaired particle.
arrangement causes polarization of the even-A core through
orbital-current and spin-density terms in the effective int
action. Core polarization is one of the effects on the Sc
moment of 225Ra which we investigate below.
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Our approach is nonrelativistic and employs Skyrme
teractions. To get an idea of the range of results this kind
calculation can produce, we use four different parametri
tions of the Skyrme energy functional, i.e., four differe
Skyrme forces. These four parametrizations give similar
sults for many observables near stability, but still have s
nificant differences. Our favorite interaction, for reasons
plained below, is SkO8 @17,18#, but we also show results fo
the commonly used forces SIII@19#, SkM* @20#, and SLy4
@21#.

B. Related observables in even isotopes

Intrinsic-parity breaking in even radium isotopes is t
subject of several theoretical analyses; see the review in
@22# and the more recent studies in Refs.@23,24#. To assess
the ability of the Skyrme interactions to handle it, we pe
form a series of Hartree-Fock~HF! 1 BCS calculations for
even radium isotopes. We use the Skyrme-HF1BCS code
from Ref. @25#; it represents single-particle wave function
on an axially symmetric mesh, and uses Fourier definitio
of the derivative, 1/r', and 1/r'

2 operators. We choose 7
grid points in thez direction and 27 in ther' ~perpendicular!
direction, with 0.8 fm between them. The code uses
density-independent zero-range pairing interaction with
self-adjusting cutoff as described in Ref.@26#. For each
Skyrme force we adjust the pairing strength separately
protons and neutrons@26#. We should note that other self
consistent mean-field models, namely, HF1BCS with the
nonrelativistic Gogny force@27# and the relativistic mean
field model @28#, yield results that are similar to those w
describe now.

Figure 1 illustrates the calculated evolution of intrins
deformation with increasing neutron number in the radiu
isotopes. It shows a plot of the intrinsic ground-state ma
density contours predicted by SkO8. The mean-field ground
states go from having a spherical shape at the magic num
N5126 to a quadrupole-deformed~reflection-symmetric!
shape atN5130, then to quadrupole-1octupole-deformed
~reflection-asymmetric! shapes for 132<N<140, and finally
back to quadrupole-deformed shapes at higherN. Because
the ground states are obtained from a variational princip
all shape moments higher than octupole are also optim
~the isoscalar dipole moment is constrained to be zero!. The
1-3
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nucleus225Ra, with N5137, will clearly be well deformed
in both quadrupole and octupole coordinates. The struct
at small radii visible forN>132 reflect small oscillations o
the density distribution around the saturation value~for a
given neutron excess! caused by shell effects.

We must note that the octupole-deformed minima are
equally pronounced for all forces and isotopes. In additi
in some of the isotopes with reflection-symmetric minim
some of the Skyrme forces predict an excited octupo
deformed minimum separated by a small barrier from
ground-state minimum. Furthermore, in the transitional
clei, which have soft potentials in the octupole direction,
parity-breaking intrinsic deformations are subject to colle
tive correlations as discussed in Ref.@27#. The influence of
correlations will be the smallest for the nuclides with t
most pronounced octupole-deformed minima, usually222Ra
and 224Ra. This fact supports our belief that our mean-fie
calculations supply a good approximation to the intrin
structure in225Ra.

Figure 2 shows the relative error in the predicted bind
energiesdE5(Ecalc2Eexpt)/Eexpt for all four forces, and the
predicted two-neutron separation energies, along with
measured values. All the forces do a good job with bindi
which is not surprising given the way their parameters w
fit. The fact that the error in binding for SkO8 is nearly con-
stant withN for N.130 is reflected in the near perfect agre
ment in the bottom panel with the measured two-neut
separation energiesS2n . The errors in predicted values o
S2n around N5128 probably reflect the deficiencies
mean-field models in transitional nuclei.

Figure 3 shows three parity-violating intrinsic quantitie
In the top panel is the ground-state octupole deforma
b354p^r 3Y30&/(3AR3) ~whereR51.2A1/3) as a function of
neutron number. The trend mirrors this in the density profi
shown earlier. AtN5136, one less neutron than in225Ra, all
the forces predict almost identical octupole deformation
result we like. Experimental data for octupole moments
still sparse in this region; we are only aware ofb3

FIG. 2. Relative error in binding energy~top! and predicted
two-neutron separation energies~bottom! for four Skyrme interac-
tions in a series of even-N radium isotopes. The experimental sep
ration energies are also shown.
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50.105(4) forN5138, a value that can be deduced from t
B(E3;01

1→31
2) given in Ref.@30#. „In 224Ra and226Ra, by

the way, we agree fairly well with the quadrupole momen
obtained fromB(E2)’s in Ref. @31#. For example, SkO8
gives b250.184 in 224Ra and experiment givesb2
50.179(4).…

The second panel in the figure shows the absolute va
of intrinsic dipole momentsD05e(p^zp&, along with ex-
perimental data extracted fromE1 transition probabilities
@22#. The calculated values forD0 change sign from positive
to negative betweenN5134 andN5138, reflecting a small
change in the location of the center of charge from the ‘‘to
half of the pear-shaped nucleus to the ‘‘bottom’’ half. Th
predicted sign change is consistent with the near-zero exp
mental value forN5136. None of the forces precisely re
produces the trend through all the isotopes, but the comp
son has to be taken with a grain of salt because ‘‘data’’ der
from transitions between excited rotational states and, th
fore, are not necessarily identical to the ground-state dip
moments. Cranked Skyrme-HF calculations without pair
correlations @24# and cranked HFB calculations with th
Gogny force @23# predict that for most Ra isotopesD0
changes significantly with angular momentum. In any eve
as thoroughly discussed in Ref.@22#, the intrinsic dipole mo-
ment is a small and delicate quantity.

The intrinsic Schiff moment̂ Sz&, the quantity we are
really interested in, is more collective and under better c
trol, as the bottom panel of the figure shows. The vario
predictions are usually within 20% of one another and lar
confirming the predictions originally made in Refs.@6,7#.
The octupole deformation and intrinsic dipole moment ha
been shown to change only slightly with parity projectio

. . .
. . .

FIG. 3. The predicted first-order@29# octupole deformations
~top!, intrinsic dipole moments~middle! and intrinsic Schiff mo-
ments~bottom! for four Skyrme interactions in a series of even-N
Radium isotopes. The experimental intrinsic dipole moments
also shown. Where symbols are missing, the corresponding
dicted values are zero because the mean field is not asymmetri
deformed.
1-4
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TIME-REVERSAL VIOLATING SCHIFF MOMENT OF 225Ra PHYSICAL REVIEW C68, 025501 ~2003!
from the intrinsic states@23#, and the same is probably tru
of the intrinsic Schiff moment.

By turning the pairing force off, we are able to se
whether the parity-violating quantities in Fig. 3 are affect
by pairing correlations. In224Ra, for example, SkO8 gives
b350.141, D0520.103e fm, and ^Sz&534.4e fm3 with-
out pairing, andb350.143, D0520.093e fm, and ^Sz&
534.3e fm3 when pairing is included. In this nucleus unce
tainties related to pairing are very small.

Finally, in Fig. 4, we show the predicted proton and ne
tron single-particle spectra generated by the ground-s
mean-field in 224Ra. The combination of quadrupole, oct
pole, and higher deformations reduces the level den
around the Fermi surface for both kinds of nucleon, lead
to significant deformedZ588 andN5132 shell closures for
all interactions, and a somewhat weakerN5136 subshell
closure for SIII, SkM*, and SkO8. The small level density
around the Fermi surface might explain the insensitivity
the deformation to pairing correlations mentioned above.
all the forces except SkM* , the first empty neutron leve
clearly hasj z51/2, implying that in 225Ra the ground-state
parity-doublet bands will be built onJp5(1/2)6 states. For
SkM* , the situation is less clear because thej z51/2 and 3/2
states are nearly degenerate, and it is necessary to carr
the calculation in225Ra itself to see which becomes the low
est.

IV. CALCULATING THE SCHIFF MOMENT OF 225Ra

A. Odd-A nuclei and Schiff moments in mean-field
approximation

Fully self-consistent calculations in odd-A nuclei are pos-
sible, but seldom performed. For many physical observa
it is enough to neglect correlations between the odd part
and the core, which amounts to dropping a valence part
into the field generated by that core. Other quantities, h
ever, are sensitive to the interaction between the last par
and the core. The interaction can change the deformation
the pairing strength, and produce various kinds of core

FIG. 4. Single-particle spectra for protons~top! and neutrons
~bottom! in 224Ra for the four Skyrme interactions.
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larization. In fact, a self-consistent odd-A calculation is
equivalent to first performing the calculation in the eve
even nucleus with one less neutron, and then placing the
nucleon in the first empty orbit and treating its polarizin
effect on the core in random-phase approximation@32,33#.
Fully self-consistent calculations take all kinds of polariz
tion into account simultaneously. For us, the spin polari
tion is of particular interest.

To proceed here we use the public-domain Skyrm
Hartree-Fock codeHFODD ~v2.04b! @34–36#, which allows
the mean-field and the associated Slater determinant to
multaneously break invariance under rotation, reflect
through three planes, and time reversal~the code we used in
the last section does not!. Breaking the first is necessary t
describe a deformed nucleus. Breaking all the three refl
tions ~and not only parity! is necessary to represent axi
octupole deformation with the spin aligned along the sy
metry axis. Breaking the last induces spin polarization in
core, which because of Kramers degeneracy cannot ot
wise occur. Incorporating spin polarization is important b
cause it has the potential to significantly alter the mat
element ofÛPT in Eq. ~8! from its value in the particle-rotor
model, where the spin is carried entirely by one valence p
ticle. The codeHFODD cannot yet treat pairing when it allow
T to be broken, but pairing inT-odd channels is poorly un
derstood. No existing codes can do more thanHFODD in odd-
A octupole-deformed nuclei.

As stated above, we use the Skyrme interactions S
SkM* , SLy4, and SkO8. The reason SkO8 is our favorite has
to do with the part of the energy functional composed
T-odd spin densities~which, following common practice, we
refer to as the ‘‘T-odd functional,’’ even though the entir
functional must be even under T!. The T-odd functional
plays no role in the mean-field ground states of even nuc
but can be important in any state with nonzero angular m
mentum. Of the forces above, only SkO8 has been seriously
investigated inT-odd channels. In Ref.@17#, the T-odd part
of the functional was adjusted to reproduce Gamow-Te
resonances, resulting in an effective Landau parameteg08
51.2. In the isoscalar channel, the force was adjusted
reproduce the commonly used valueg050.4 @37#. Although
there are not enough data to constrain other relevant pa
eters in the functional, and although a very recent calcula
starting from a realistic nucleon-nucleon interaction@38#,
while confirming the valueg0851.2, findsg050.85, SkO8 is
clearly the best available Skyrme interaction for describ
spin-spin interactions. The correspondingT-odd terms in the
functional are precisely those that will polarize the spin
the core. There are other terms that could be added to
standard Skyrme interaction and do the same thing—the
sor force, for example—but they are almost never used
their effects still need to be investigated.

The parameters of the other three forces SIII, SkM* , and
SLy4 were adjusted entirely to ground-state properties
even-even nuclei, and so the Landau parametersg0 and g08
were not fit. Here, we set them to zero by treating theT-odd
andT-even terms in the Skyrme functional independently,
described in Ref.@17#. Only orbital terms, which are fixed by
1-5
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TABLE I. The intrinsic Schiff moment, in units ofe fm3 and the intrinisic-state expectation values
operators in Eq.~10!, in units of 1023 fm24.

^Ŝz& ^st•“r0& ^st•“r1& ^s•J0& ^s•J1& ^st•J0& ^st•J1&

SIII~0! 34.6 21.081 20.087 21.047 0.162 21.049 0.159
SkM* ~0! 46.6 20.730 20.497 21.043 0.099 21.042 0.085
SLy4~0! 43.4 20.676 20.578 21.303 20.016 21.299 20.019
SkO8~—! 41.7 20.343 20.318 21.149 0.030 21.149 0.030
SkO8 41.7 20.467 20.227 20.476 0.014 20.526 0.014
Reference@6# 24 22 20.4
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gauge invariance@39# ~a generalization of Galilean invari
ance!, appear in theT-odd parts of these forces.

We rely on the crudest forms of projection. For parity, th
means none at all, and for angular momentum it means
serting the rigid-rotor factorJ/(J11)51/3 in front of the
intrinsic Schiff moment, as described above. In other wor
we use Eq.~6! with the intrinsic state taken to be the Hartre
Fock ground state produced byHFODD. Just as in the
particle-rotor model, the intrinsic Schiff moment is given b
the classical expression, Eq.~1!, but withrch equal toe times
the Hartree-Fock ground-state proton density. As alre
mentioned, the Hartree-Fock approximation allows us,
summing over occupied orbits, to write the intrinsic mat

element of the two-body potentialV̂PT as the expectation

value of an effective one-body operatorÛPT . Because we
now have a microscopic version of the ‘‘core,’’ this effectiv
potential is more complicated than in Eq.~8!, and it now acts
on all the nucleons:

ÛPT5
g

2mp
2 mN

(
i 51

A

sitz,i•“E d3r 8S mp
2 e2mpur2r8u

4pur2r8u
D

3@~ ḡ012ḡ2!r1~r8!2ḡ1r0~r8!#1exchange. ~9!

Here,r0(r)[rn(r)1rp(r) andr1(r)[rn(r)2rp(r) are the
isoscalar and isovector densities. The part resulting from

change terms in the original two-body interactionV̂PT is
nonlocal, just as in the usual Hartree-Fock mean field,
we have not written it explicitly here~though we do below!.

The codeHFODD at present cannot evaluate the expec
tion value of a folded potential like the one above, which
due to the finite pion range. Nevertheless, even in the z
range approximation we can avoid several of t
assumptions—proportionality of neutron and proton den
ties, negligibility of exchange terms, and absence of c
spin—leading to the extremely simplified potential in E
~8!. The zero-range approximation is equivalent to assum
that the pion is very heavy, so that the term involving t
pion mass in Eq.~9! becomes ad function. Under this as-
sumption, but none other, the exchange terms become

and ÛPT takes the form
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ÛPT~r!→2
g

2mp
2 mN

H (
i 51

A

sitz,i•@~ ḡ012ḡ2!“r1~r!

2ḡ1“r0~r!#1
1

2 (
i 51

A

si•@~23ḡ01ḡ1tz,i !J0~r!

1~ ḡ11ḡ0tz,i24ḡ2tz,i !J1~r!#J . ~10!

Here,J(r) is the ‘‘spin-orbit’’ current, defined, e.g., in Ref
@17#, and references therein, and the subscripts 0 and 1 r
to isoscalar and isovector combinations as they do for
density. The terms inÛPT that containJ are the exchange
terms omitted above. We will evaluate them, but argue la
that their effects are probably small when the finite range
restored. The terms containing the densityr all result from
the direct part ofV̂PT . We do not simplify things further to
obtain something like Eq.~8!, becauserp is not really pro-
portional torn and the core nucleons do carry some spin.
will manage nevertheless, to compare our results with th
of Ref. @6#. We will also estimate the effect of a finite pio
range on the direct terms, though our inability to do so m
precisely at present is the most significant shortcoming
this work.

HFODD works by diagonalizing the interaction in th
eigenbasis of an optimal anisotropic three-dimensional h
monic oscillator. For225Ra, algorithms developed in Re
@34# give oscillator frequencies of\vz57.0625 and\v'

58.6765 MeV in the directions parallel and perpendicular
the elongation axis. The matrix element ofÛPT converges
only slowly as we increase the number of levels in the ba
When the interaction polarizes the core, it takes 2500
more single-particle basis states to get convergence. The
sis then contains up toNz526 andN'521 oscillator quanta.

B. Laboratory Schiff moment of 225Ra

We turn finally to results in225Ra itself. For SkO8, our
HFODD calculations yieldb250.190, b350.146, andb4
50.136 for the usual first-order approximation to the def
mation parameters determined from mass multipole m
ments@29#. The laboratory Schiff moment, Eq.~6!, is pro-
portional to the product of the intrinsic Schiff moment^Ŝz&
1-6
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and the expectation valuêV̂PT&. Table I shows the intrinsic
moments and the expectation values of the six operators
enter the zero-range approximation toV̂PT in Eq. ~10!. Be-
fore commenting on the entries, we mention what is in e
of the forces and calculations.

For all the forces, terms in the functional that are prop
tional to Laplacians of spin densities (s•Ds) and density-
dependent spin-spin terms (f (r)s•s), cf. Refs.@17,39# which
enter through theT-odd part of the Skyrme functional, hav
been turned off. For the first three rows in Table I@forces
labeled with~0!#, the spin-spin terms have also been turn
off, so that the only nonzero terms in theT-odd functional~as
noted above! are those required by gauge invariance. For
fourth row@SkO8~—!#, all T-odd terms in the functional hav
been turned off, so that aside from the self-consistency in
wave functions the calculation resembles one with a p
nomenological ~non-self-consistent! potential, for which
T-odd mean fields are never considered. We include this
sult so that we can distinguish the role played by core po
ization. The results in the line labeled SkO8 include the time-
odd channels, adjusted as discussed above@17#. This is the
force in which we have the most confidence. The last entr
the result of Ref.@6#, with the implicit assumption that the
neutron and proton densities are proportional.

In our calculations, the intrinsic Schiff moments are clo
to one another, and all are less than twice the estimate of
@6#. The agreement reflects the collective nature of these
trinsic moments; they are even larger than the particle-ro
estimates. But the matrix elements ofV̂PT , the other ingre-
dient in Eq.~6! for the laboratory Schiff moment, are a b
more delicate. Our results show the exchange terms on
right side of the table to be comparable to the direct term
result that is surprising because for a spin-saturated core~or
in the particle-rotor model! the exchange terms vanish e
actly. We think, however, that the ratio of exchange to dir
terms would become small, were the finite range of the
teraction reintroduced and short-rangeNN correlations in-
serted.

Though unable to include either effect here, we did so
a Nilsson model for225Ra. We took nucleons there to occup
independent single-particle levels generated by a defor
oscillator potential with b250.138, b350.104, and b4
50.078, values taken from Ref.@6#. We then evaluated the
ground-state expectation value of the full two-body inter
tion V̂PT , with and without the zero-range approximatio
~and in the latter case, with short-range correlations inclu
in the manner of Ref.@40#!. In this simple model, the valenc
nucleon carries all the spin, and only the neutron-proton
neutron-neutron parts ofV̂PT contribute. The directnp term
shrank by a factor of 1.5, while the corresponding excha
term shrank by a factor of 1400@both independent of theḡ’s
in Eq. ~4!, it turns out# when the range of the interaction wa
set to its proper value. The results in thenn channel were
less dramatic: the direct part again shrank by 1.5 and
exchange part by a factor of 5. When we moved the vale
neutron to higher orbits, these numbers changed some—
direct terms sometimes were not suppressed at all and o
times shrank by factors of up to 6, but the ratios of t
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exchange to direct contributions almost always ended
small. Similar behavior was found for parity-violating force
in Ref. @41#, where it was traced in part to the differen
average momenta carried by the pion in direct and excha
graphs. So that we can compare our results with those of
@6#, we will neglect the exchange terms from now on, thou
we caution that this step should eventually be justified m
rigorously, e.g., by actually calculating them with the finit
range force in the full mean-field model. The reduction w
see in the direct terms is in line with the results of Ref.@42#,
though we find it more variable.2

Though we cannot yet be more quantitative about fin
range effects, we do quantify the core polarization in Tabl
For the first three rows of the table, where the forces
labeled~0!, the spin-spin terms are absent from the ene
functional, and the protons in the core develop only a sm
spin density from theT-odd terms required by gauge invar
ance. For the fourth row, SkO8~—!, all T-odd terms are ab-
sent and the protons can have no spin at all. This means
the operatorsf (r)s and f (r)st have either the same or a
most the same expectation value for anyf (r) so that columns
4 and 6 (̂ s•J0& and^st•J0&) have identical or nearly iden
tical entries for these forces, and so do columns 5 an
(^s•J1& and ^st•J1&). The fifth row of the table contains
the effects of spin polarization, which are primarily to alt
the neutron-spin density; the equalities between the colu
are not badly broken, so the protons do not develop m
spin. The same is true of the terms involvingr, though that
is not obvious from the table because we display only
two terms that appear in Eq.~10!.

These near equalities and the probable irrelevance of
exchange terms when the finite range is taken into acco
imply that only the quantitiessn•“rn and sn•“rp are ul-
timately important. We display them in Table II. Except f
SIII, the neutron-density distribution affects the matrix e
ment much more than that of protons. By comparing
fourth and fifth rows, however, we see that spin correlatio
increase the role of the protons, while reducing that of
neutrons slightly. Thus, while the spin-spin interactions

2We performed another test, using the direct part of Eq.~10! with
the valence wave function taken from the Nilsson model just
scribed, but with the neutron and protons densities assumed to
more realistic Woods-Saxon forms. The direct terms were ag
suppressed by factors of 1.5 to almost 10 that depended sig
cantly on the valence orbit.

TABLE II. Intrinsic-state expectation values of important matr
elements, in the neutron-proton scheme, in units of 1023 fm24.

^sn•“rn& ^sn•“rp&

SIII~0! 20.577 20.491
SkM* ~0! 20.619 20.120
SLy4~0! 20.628 20.050
SkO8~—! 20.331 20.013
SkO8 20.320 20.114
Reference@6# 21.2 20.8
1-7



d

s

on
ts
d

i-
f
in

or
of
o

a
ge
by
f.

ic
.
on

a
s

n

ra

e
s,

i-

m

o-
on,
ge
g-
st a

ion
the
n-
uld
e

an-
s,

.
ore
es

otor

s
the
of
en
ite
e
, as
ns

iff
-

.
o-
rap-

ent
he

om
ern
or

he
port
ogy.

J. ENGELet al. PHYSICAL REVIEW C 68, 025501 ~2003!
not cause the protons to develop much net spin, they
correlate the neutron spin with the proton density.

There is not too much scatter in our results. The entrie
the second column (^st•“r0&) of Table I differ by factors
of 2 or 3, and the entries in the third (^st•“r1&) by a little
more, though they are all smaller than those in the sec
column~which is not surprising—the third column subtrac
the neutron and proton densities, while the second a
them!. In the neutron-proton scheme~Table II! all of our
numbers are smaller than those of Ref.@6#, a result that was
anticipated in Ref.@8#. The difference from the earlier est
mate for the larger matrix elements ranges from factors o
to 4, though the isovector combination—the third column
Table I—is sometimes actually enhanced a little.

What, at last, have we to say about the real laborat
Schiff momentS? The lab moment is given by the product
the matrix elements just discussed, the intrinsic Schiff m
ments, and the unknown coefficientsḡi . Our intrinsic Schiff
moments are about 1.5 times larger than those of Ref.@6#,
while ourV̂PT matrix elements, in the zero-range approxim
tion, are smaller than theirs, usually by a somewhat lar
amount. Overall, our lab moments will usually be smaller
factors between about 1.5 and 3 than the estimates of Re@6#

~an exception can occur if for some reasonḡ1 is considerably
less than the other two coefficients!.

How large are our moments compared to that of199Hg?
The most comprehensive calculation in that nucleus, wh
appeared very recently@43#, improved on the work of Ref
@44# by including the effects of the residual strong interacti
and the full finite-range form forV̂PT . The new results are
smaller than that of Ref.@44#, only slightly so for the isovec-
tor part ofV̂PT , but by a considerable amount in the isosc
lar and isotensor channels. The authors write their result
terms of the pion-nucleon couplings as

SHg50.0004gḡ010.055gḡ110.009gḡ2 ~e fm3!. ~11!

Our result for radium, with the zero-range approximation a
exchange terms neglected, translates to

SRa
zero-range525.06gḡ0110.4gḡ1210.1gḡ2 ~e fm3!.

~12!

If the threeḡ’s are comparable, our Schiff moment is seve
hundred times larger than that of Ref.@43#, in part because
the isoscalar and isotensor interactions are more effectiv
Ra than in Hg.„If ḡ1 is larger than the other two coupling
as in left-right symmetric models@45#, our result is less than
200 times bigger than the latest one in199Hg. The very small
coefficient ofḡ0 for 199Hg in Eq. ~11!, by the way, has sig-
nificant consequences@45# for the limit on the QCD
T-violating parameterū that can be inferred from the exper
mental limit in Ref.@4#.… Accepting the work of Ref.@46# on
atomic physics in Ra and Hg, the enhancement of the ato
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EDM of 225Ra is about three times that of the Schiff m
ment, i.e., potentially more than 1000. We again cauti
however, that we have yet to include the full finite-ran
version ofV̂PT , and that our preliminary investigations su
gest that doing so will decrease our Schiff moment at lea
little. Ironically, Ref.@43# finds that including the finite range
actually increases the matrix element in199Hg, though only
slightly.

We hope to make other improvements in our calculat
as well. Projection onto states of good parity will change
results a bit, as will angular momentum projection. Our co
clusions about the size of spin-polarization corrections co
be modified by two terms in the Skyrme functional that w
have set to zero, or by a better determined value of the L
dau parameterg0 . Whatever the result of such correction
however, it is clear that the atomic EDM of225Ra will al-
ways be significanlty larger than that of199Hg.

V. CONCLUSIONS

We have calculated the Schiff moment in225Ra in the
approximation that theT-violating interaction has zero range
Our calculations, which are self-consistent and include c
polarization, give results that are generally just a few tim
smaller than earlier estimates based on the particle-r
model. Accepting the very recent results of Ref.@43#, we
currently find the Schiff moment of225Ra to be~generically!
several hundred times that of199Hg, a result that strengthen
the case for an atomic-EDM experiment in Ra, though
enhancement factor depends significantly on the sourceT
violation, and we expect it to decrease at least a little wh
we use the finite-range force. Work towards including a fin
range inHFODD is in progress. We also plan to apply th
self-consistent methods used here to other light actinides
well as to 199Hg, where we suspect octupole correlatio
may play some role@8#. Maintaining self-consistency in
199Hg should automatically control the spurious Sch
strength encountered in Ref.@43#. The source of the insensi
tivity of the Schiff moment toT violation in the isoscalar
channel in that work should be checked and understood

After many years of neglect, the question of which is
topes are the best for EDM measurements is now being
idly addressed.
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