392 research outputs found

    A SAURON study of dwarf elliptical galaxies in the Virgo Cluster: kinematics and stellar populations

    Full text link
    Dwarf elliptical galaxies (dEs) are the most common galaxy type in nearby galaxy clusters; even so, many of their basic properties have yet to be quantified. Here we present the results of our study of 4 Virgo dwarf ellipticals obtained with the SAURON integral field unit on the William Herschel Telescope (La Palma, Spain). While traditional long-slit observations are likely to miss more complicated kinematic features, with SAURON we are able to study both kinematics and stellar populations in two dimensions, obtaining a much more detailed view of the mass distribution and star formation histories. What is visible even in such a small sample is that dEs are not a uniform group, not only morphologically, but also as far as their kinematic and stellar population properties are concerned. We find the presence of substructures, varying degrees of flattening and of rotation, as well as differences in age and metallicity gradients. We confirm that two of our galaxies are significantly flattened, yet non-rotating objects, which makes them likely triaxial systems. The comparison between the dwarf and the giant groups shows that dEs could be a low-mass extension of Es in the sense that they do seem to follow the same trends with mass. However, dEs as progenitors of Es seem less likely as we have seen that dEs have much lower abundance ratios.Comment: 8 pages, 6 figures; to appear in the proceedings of the JENAM 2010 Symposium on Dwarf Galaxies (Lisbon, September 9-10, 2010); minor edits and references adde

    Is NGC 3108 transforming itself from an early to late type galaxy -- an astronomical hermaphrodite?

    Full text link
    A common feature of hierarchical galaxy formation models is the process of "inverse" morphological transformation: a bulge dominated galaxy accretes a gas disk, dramatically reducing the system's bulge-to-disk mass ratio. During their formation, present day galaxies may execute many such cycles across the Hubble diagram. A good candidate for such a "hermaphrodite" galaxy is NGC 3108: a dust-lane early-type galaxy which has a large amount of HI gas distributed in a large scale disk. We present narrow band H_alpha and R-band imaging, and compare the results with the HI distribution. The emission is in two components: a nuclear bar and an extended disk component which coincides with the HI distribution. This suggests that a stellar disk is currently being formed out of the HI gas. The spatial distributions of the H_alpha and HI emission and the HII regions are consistent with a barred spiral structure, extending some 20 kpc in radius. We measure an extinction- corrected SFR of 0.42 Msun/yr. The luminosity function of the HII regions is similar to other spiral galaxies, with a power law index of -2.1, suggesting that the star formation mechanism is similar to other spiral galaxies. We measured the current disk mass and find that it is too massive to have been formed by the current SFR over the last few Gyr. It is likely that the SFR in NGC 3108 was higher in the past. With the current SFR, the disk in NGC 3108 will grow to be ~6.2x10^9 Msun in stellar mass within the next 5.5 Gyr. While this is substantial, the disk will be insignificant compared with the large bulge mass: the final stellar mass disk-to-bulge ratio will be ~0.02. NGC 3108 will fail to transform into anything resembling a spiral without a boost in the SFR and additional supply of gas.Comment: 9 pages, 3 figures, accepted for publication in MNRA

    Central K-band kinematics and line strength maps of NGC 1399

    Full text link
    In this paper we present for the first time high spatial resolution K-band maps of the central kinematical and near-infrared spectral properties of the giant cD galaxy in the Fornax cluster, NGC 1399. We confirm the presence of a central velocity dispersion dip within radius < 0.2" seen in previous long-slit studies. Our velocity dispersion maps give evidence for a non-symmetric structure in this central area by showing three sigma peaks to the north-east, south-east and west of the galaxy centre. Additionally we measure near-IR line strength indices at unprecedented spatial resolution in NGC 1399. The most important features we observe in our 2-dimensional line strength maps are drops in Na I and CO(2-0) line strength in the nuclear region of the galaxy, coinciding spatially with the drop in sigma. The observed line strength and velocity dispersion changes suggest a scenario where the centre of NGC 1399 harbours a dynamically cold subsystem with a distinct stellar population.Comment: 9 pages, 5 figures, accepted for publication in A&

    VLT Diffraction Limited Imaging and Spectroscopy in the NIR: Weighing the black hole in Centaurus A with NACO

    Full text link
    We present high spatial resolution near-infrared spectra and images of the nucleus of Centaurus A (NGC 5128) obtained with NAOS-CONICA at the VLT. The adaptive optics corrected data have a spatial resolution of 0.06" (FWHM) in K- and 0.11" in H-band, four times higher than previous studies. The observed gas motions suggest a kinematically hot disk which is orbiting a central object and is oriented nearly perpendicular to the nuclear jet. We model the central rotation and velocity dispersion curves of the [FeII] gas orbiting in the combined potential of the stellar mass and the (dominant) black hole. Our physically most plausible model, a dynamically hot and geometrically thin gas disk, yields a black hole mass of M_bh = (6.1 +0.6/-0.8) 10^7 M_sun. As the physical state of the gas is not well understood, we also consider two limiting cases: first a cold disk model, which completely neglects the velocity dispersion; it yields an M_bh estimate that is almost two times lower. The other extreme case is to model a spherical gas distribution in hydrostatic equilibrium through Jeans equation. Compared to the hot disk model the best-fit black hole mass increases by a factor of 1.5. This wide mass range spanned by the limiting cases shows how important the gas physics is even for high resolution data. Our overall best-fitting black hole mass is a factor of 2-4 lower than previous measurements. With our revised M_bh estimate, Cen A's offset from the M_bh-sigma relation is significantly reduced; it falls above this relation by a factor of ~2, which is close to the intrinsic scatter of this relation. (Abridged)Comment: 12 pages, 14 figures, including minor changes following the referee report; accepted for publication in The Astrophysical Journa

    Explaining two circumnuclear star forming rings in NGC5248

    Full text link
    The distribution of gas in the central kiloparsec of a galaxy has a dynamically rapid evolution. Nonaxisymmetries in the gravitational potential of the galactic disk, such as a large scale stellar bar or spiral, can lead to significant radial motion of gaseous material from larger radii to the central region. The large influx of gas and the subsequent star formation keep the central region constantly changing. However, the ability of gas to reach the nucleus proper to fuel an AGN phase is not guaranteed. Gas inflow can be halted at a circumnuclear star forming ring several hundred parsec away. The nearby galaxy NGC5248 is especially interesting in this sense since it is said to host 2 circumnuclear star forming rings at 100pc and 370pc from its quiescent nucleus. Here we present new subarcsecond PdBI+30m CO(2-1) emission line observations of the central region. For the first time the molecular gas distribution at the smallest stellar ring is resolved into a gas ring, consistent with the presence of a quiescent nucleus. However, the molecular gas shows no ring structure at the larger ring. We combine analyses of the gaseous and stellar content in the central kiloparsec of this galaxy to understand the gas distribution and dynamics of this star forming central region. We discuss the probability of two scenarios leading to the current observations, given our full understanding of this system, and discuss whether there are really two circumnuclear star forming rings in this galaxy.Comment: Accepted for publication in A&A, 14pages + long tabl

    Line-of-sight velocity distribution corrections for Lick/IDS indices of early-type galaxies

    Full text link
    We investigate line-of-sight velocity distribution (LOSVD) corrections for absorption line-strength indices of early-type galaxies in the Lick/IDS system. This system is often used to estimate basic stellar population parameters such as luminosity weighted ages and metallicities. Using single stellar population model spectral energy distributions by Vazdekis (1999) we find that the LOSVD corrections are largely insensitive to changes in the stellar populations for old galaxies (age >3 Gyr). Only the Lick/IDS Balmer series indices show an appreciable effect, which is on the order of the correction itself. Furthermore, we investigate the sensitivity of the LOSVD corrections to non-Gaussian LOSVDs. In this case the LOSVD can be described by a Gauss-Hermite series and it is shown that typical values of h_3 and h_4 observed in early-type galaxies can lead to significant modifications of the LOSVD corrections and thus to changes in the derived luminosity weighted ages and metallicities. A new, simple parameterisation for the LOSVD corrections, taking into account the h_3 and h_4 terms, is proposed and calibrations given for a subset of the Lick/IDS indices and two additional indices applicable to old (>3 Gyr) stellar populations.Comment: 10 pages, 8 figures, accepted by A&

    A SAURON look at galaxy bulges

    Full text link
    Kinematic and population studies show that bulges are generally rotationally flattened systems similar to low-luminosity ellipticals. However, observations with state-of-the-art integral field spectrographs, such as SAURON, indicate that the situation is much more complex, and allow us to investigate phenomena such as triaxiality, kinematic decoupling and population substructure, and to study their connection to current formation and evolution scenarios for bulges of early-type galaxies. We present the examples of two S0 bulges from galaxies in our sample of nearby galaxies: one that shows all the properties expected from classical bulges (NGC5866), and another case that presents kinematic features appropriate for barred disk galaxies (NGC7332).Comment: 4 pages, 3 figures, accepted for publishing in AN (refereed conf. proc. of the Euro3D Science workshop, IoA Cambridge, May 2003

    Dynamics of embedded bars and the connection with AGN. I. ISAAC/VLT stellar kinematics

    Get PDF
    We present new stellar kinematical profiles of four galaxy hosts of active galactic nuclei, using the CO bandhead around 2.3 micron with the ISAAC/VLT spectrograph. We find that the nuclear bars or discs, embedded in large-scale primary bars, have all a decoupled kinematics, in the sense that the maximum of the rotational velocity occurs in the nuclear region. In three cases (NGC 1097, NGC 1808 and NGC 5728), the velocity dispersion displays a significant drop at the nucleus, a rarely observed phenomenon. We also detect kinematical asymmetries (m=1 mode) along the nuclear bar major-axis of NGC 1808 and NGC 5728, dynamical counterparts of corresponding asymmetries in the surface brightness. We have derived simple dynamical models in an attempt to fit the kinematics of each galaxy and reconstruct the full velocity field. For all four targets, the fits are good, and confirm the presence of the decoupled nuclear components. These models cannot however reproduce the observed central drop in the dispersion. We suggest that this drop is due to a transient cold nuclear disc, fuelled by gas inflow along the bar, that has recently formed new stars

    Compact massive objects in Virgo galaxies: the black hole population

    Get PDF
    We investigate the distribution of massive black holes (MBHs) in the Virgo cluster. Observations suggest that AGN activity is widespread in massive galaxies (M>1e10 solar masses), while at lower galaxy masses star clusters are more abundant, which might imply a limited presence of central black holes in these galaxy-mass regimes. We explore if this possible threshold in MBH hosting, is linked to nature, nurture, or a mixture of both. The nature scenario arises naturally in hierarchical cosmologies, as MBH formation mechanisms typically are efficient in biased systems, which would later evolve into massive galaxies. Nurture, in the guise of MBH ejections following MBH mergers, provides an additional mechanism that is more effective for low mass, satellite galaxies. The combination of inefficient formation, and lower retention of MBHs, leads to the natural explanation of the distribution of compact massive ob jects in Virgo galaxies. If MBHs arrive to the correlation with the host mass and velocity dispersion during merger-triggered accretion episodes, sustained tidal stripping of the host galaxies creates a population of MBHs which lie above the expected scaling between the holes and their host mass, suggesting a possible environmental dependence.Comment: MNRAS letter

    SAURON: An Innovative Look at Early-Type Galaxies

    Get PDF
    A summary of the SAURON project and its current status is presented. SAURON is a panoramic integral-field spectrograph designed to study the stellar kinematics, gaseous kinematics, and stellar populations of spheroids. Here, the sample of galaxies and its properties are described. The instrument is detailed and its capabilities illustrated through observational examples. These includes results on the structure of central stellar disks, the kinematics and ionization state of gaseous disks, and the stellar populations of galaxies with decoupled cores.Comment: 10 pages, 6 figures. To appear in "The Dynamics, Structure & History of Galaxies", eds. G. S. Da Costa & E. M. Sadler (San Francisco: ASP). Version with full resolution images available at http://www.strw.leidenuniv.nl/~dynamics/Instruments/Sauron/pub_list.htm
    • 

    corecore