14 research outputs found

    Fast outflow of neutral and ionized gas from the radio galaxy 3C 293

    Get PDF
    We detect a fast outflow of neutral and ionized gas with velocities up to about 1000 km/s from the central region of radio galaxy 3C 293. With optical spectroscopy we locate the bulk of the ionized gas outflow at the position of a bright radio hot-spot in the inner radio jet, about 1 kpc east of the nucleus. Given the presence of large amounts of cold gas and the distorted morphology of the radio jet in this region, we argue that the ISM is pushed out by a severe interaction with the radio plasma. The similarity of the outflow of HI with the ionized gas outflow that we see at the position of the radio hot-spot suggests that despite the high energies involved in the jet-ISM interaction, part of the gas stays, or becomes again, neutral. In this paper we also present the detection of HI emission in three nearby companions of 3C 293.Comment: 8 pages, 4 figures. Proceedings of the "Extra-planar Gas" conference, Dwingeloo, the Netherlands, June 7-11, 2004. To appear in ASP Conference Series, ed. R. Brau

    PKSB1740-517: An ALMA view of the cold gas feeding a distant interacting young radio galaxy

    Get PDF
    Cold neutral gas is a key ingredient for growing the stellar and central black hole mass in galaxies throughout cosmic history. We have used the Atacama Large Millimetre Array (ALMA) to detect a rare example of redshifted 12^{12}CO(2-1) absorption in PKS B1740-517, a young (t1.6×103t \sim 1.6 \times 10^{3} yr) and luminous (L5GHz6.6×1043L_{\rm 5 GHz} \sim 6.6 \times 10^{43} erg s1^{-1} ) radio galaxy at z=0.44z = 0.44 that is undergoing a tidal interaction with at least one lower-mass companion. The coincident HI 21-cm and molecular absorption have very similar line profiles and reveal a reservoir of cold gas (Mgas107108M_{\rm gas} \sim 10^{7} - 10^{8} M_{\odot}), likely distributed in a disc or ring within a few kiloparsecs of the nucleus. A separate HI component is kinematically distinct and has a very narrow line width (ΔvFWHM5\Delta{v}_{\rm FWHM} \lesssim 5 km s1^{-1}), consistent with a single diffuse cloud of cold (Tk100T_{\rm k} \sim 100 K) atomic gas. The 12^{12}CO(2-1) absorption is not associated with this component, which suggests that the cloud is either much smaller than 100 pc along our sight-line and/or located in low-metallicity gas that was possibly tidally stripped from the companion. We argue that the gas reservoir in PKS B1740-517 may have accreted onto the host galaxy \sim50 Myr before the young radio AGN was triggered, but has only recently reached the nucleus. This is consistent with the paradigm that powerful luminous radio galaxies are triggered by minor mergers and interactions with low-mass satellites and represent a brief, possibly recurrent, active phase in the life cycle of massive early type galaxies.Comment: 15 pages, 7 figures, accepted for publication in MNRA

    Extragalactic Radio Continuum Surveys and the Transformation of Radio Astronomy

    Full text link
    Next-generation radio surveys are about to transform radio astronomy by discovering and studying tens of millions of previously unknown radio sources. These surveys will provide new insights to understand the evolution of galaxies, measuring the evolution of the cosmic star formation rate, and rivalling traditional techniques in the measurement of fundamental cosmological parameters. By observing a new volume of observational parameter space, they are also likely to discover unexpected new phenomena. This review traces the evolution of extragalactic radio continuum surveys from the earliest days of radio astronomy to the present, and identifies the challenges that must be overcome to achieve this transformational change.Comment: To be published in Nature Astronomy 18 Sept 201

    Giant galaxy growing from recycled gas: ALMA maps the circumgalactic molecular medium of the Spiderweb in [C i]

    Get PDF
    The circumgalactic medium (CGM) of the massive Spiderweb Galaxy, a conglomerate of merging proto-cluster galaxies at z = 2.2, forms an enriched interface where feedback and recycling act on accreted gas. This is shown by observations of [CI], CO(1-0), and CO(4-3) performed with the Atacama Large Millimeter Array and Australia Telescope Compact Array. [CI] and CO(4-3) are detected across ∼50 kpc, following the distribution of previously detected low-surface-brightness CO(1-0) across the CGM. This confirms our previous results on the presence of a cold molecular halo. The central radio galaxy MRC 1138-262 shows a very high global L CO(4−3)/L CO(1−0) ∼ 1, suggesting that mechanisms other than FUVheating by star formation prevail at the heart of the Spiderweb Galaxy. Contrary, the CGM has L CO(4−3)/L CO(1−0) and L [C I]/L CO(1−0) similar to the ISM of five galaxies in the wider proto-cluster, and its carbon abundance, X[C I]/XH2 , resembles that of the Milky Way and star-forming galaxies. The molecular CGM is thus metal-rich and not diffuse, confirming a link between the cold gas and in situ star formation. Thus, the Spiderweb Galaxy grows not directly through accretion of gas from the cosmic web, but from recycled gas in the CGM

    PKS B1740-517: an ALMA view of the cold gas feeding a distant interacting young radio galaxy

    No full text
    Cold neutral gas is a key ingredient for growing the stellar and central black hole mass in galaxies throughout cosmic history. We have used the Atacama Large Millimetre Array to detect a rare example of redshifted 12CO (2–1) absorption in PKS B1740–517, a young (t ∼ 1.6 × 103 yr) and luminous (⁠L5GHz≈6.6×1043 erg s−1) radio galaxy at z = 0.44 that is undergoing a tidal interaction with at least one lower mass companion. The coincident H I 21-cm and molecular absorption have very similar line profiles and reveal a reservoir of cold gas (Mgas ∼ 107−108 M⊙), likely distributed in a disc or ring within a few kiloparsecs of the nucleus. A separate H I component is kinematically distinct and has a very narrow line width (ΔvFWHM ≲ 5 km s−1), consistent with a single diffuse cloud of cold (Tk ∼ 100 K) atomic gas. The 12CO (2–1) absorption is not associated with this component, which suggests that the cloud is either much smaller than 100 pc along our sight line and/or located in low-metallicity gas that was possibly tidally stripped from the companion. We argue that the gas reservoir in PKS B1740–517 may have accreted on to the host galaxy ∼ 50 Myr before the young radio AGN was triggered, but has only recently reached the nucleus. This is consistent with the paradigm that powerful luminous radio galaxies are triggered by minor mergers and interactions with low-mass satellites and represent a brief, possibly recurrent, active phase in the life cycle of massive early-type galaxies

    The radio spectral energy distribution of infrared-faint radio sources

    No full text
    Context.Infrared-faint radio sources (IFRS) are a class of radio-loud (RL) active galactic nuclei (AGN) at high redshifts (z ≥ 1.7) that are characterised by their relative infrared faintness, resulting in enormous radio-to-infrared flux density ratios of up to several thousand. Aims. Because of their optical and infrared faintness, it is very challenging to study IFRS at these wavelengths. However, IFRS are relatively bright in the radio regime with 1.4 GHz flux densities of a few to a few tens of mJy. Therefore, the radio regime is the most promising wavelength regime in which to constrain their nature. We aim to test the hypothesis that IFRS are young AGN, particularly GHz peaked-spectrum (GPS) and compact steep-spectrum (CSS) sources that have a low frequency turnover. Methods. We use the rich radio data set available for the Australia Telescope Large Area Survey fields, covering the frequency range between 150 MHz and 34 GHz with up to 19 wavebands from different telescopes, and build radio spectral energy distributions (SEDs) for 34 IFRS. We then study the radio properties of this class of object with respect to turnover, spectral index, and behaviour towards higher frequencies. We also present the highest-frequency radio observations of an IFRS, observed with the Plateau de Bure Interferometer at 105 GHz, and model the multi-wavelength and radio-far-infrared SED of this source. Results. We find IFRS usually follow single power laws down to observed frequencies of around 150 MHz. Mostly, the radio SEDs are steep (α < −0.8; 74+6-9%), but we also find ultra-steep SEDs (α < −1.3; 6+7-2%). In particular, IFRS show statistically significantly steeper radio SEDs than the broader RL AGN population. Our analysis reveals that the fractions of GPS and CSS sources in the population of IFRS are consistent with the fractions in the broader RL AGN population. We find that at least 18+8-5% of IFRS contain young AGN, although the fraction might be significantly higher as suggested by the steep SEDs and the compact morphology of IFRS. The detailed multi-wavelength SED modelling of one IFRS shows that it is different from ordinary AGN, although it is consistent with a composite starburst-AGN model with a star formation rate of 170 M⊙ yr-1
    corecore