249 research outputs found

    Volumetric and acoustic behaviour of myo-inositol in aqueous Natural Deep Eutectic Solvent solutions

    Get PDF
    A study of the interactions in aqueous systems containing a sweetener, myo-inositol, and a NAtural Deep Eutectic Solvent, reline or glyceline, is presented. Both NADESs include the same acceptor group, choline chloride, and different donor groups, urea and glycerol. For this purpose, the density and speed of sound were measured for dilute mixtures, and several related properties were calculated: the standard partial molar volume, the standard partial molar isentropic compression, the standard transfer properties, Hepler's constant, and the compressibility hydration number. The results were evaluated as a function of the temperature and composition, and they show the dominance of the ionic-hydrophilic and hydrophilic-hydrophilic interactions. Moreover, the glyceline disturbs the aqueous mixtures more than the reline

    Thermophysical study of 2-acetylthiophene: experimental and modelled results

    Get PDF
    Several thermophysical properties have been studied for 2-acetylthiophene: (i) vapour pressure was determined at temperatures within 336.16–445.02 K; (ii) density, speed of sound, static permittivity, refractive index, surface tension, and kinematic viscosity were measured at p = 0.1 MPa and at temperatures from 278.15 K (or 283.15 K for the refractive index) to 338.15 K; (iii) volumetric properties were also determined at temperatures in the (283.15–338.15) K range and at pressures up to 65.0 MPa. From these experimental values, different derivative properties have been calculated such as enthalpy of vaporization, isobaric expansibility, isothermal and isentropic compressibility, dipole moment, entropy and enthalpy of surface formation, and dynamic viscosity. All experimental properties were correlated and the results were explained through the intermolecular interactions. Moreover PC-SAFT EoS was used to model the thermodynamic behaviour of the compound. Finally, this EoS combined with the Density Gradient Theory allowed obtaining the influence parameter for the surface tension of 2-acetylthiophene

    pVT behaviour of hydrophilic and hydrophobic eutectic solvents

    Get PDF
    Among the basic principles of green chemistry is the search for less harmful alternative solvents than conventional solvents. Knowing the thermophysical properties of fluids under different pressure and temperature conditions is essential to propose them. Herein, we present data on the densities at several pressures (from 0.1 to 65 MPa) and temperatures (from 283.15 to 338.15 K) of two deep eutectic solvents with hydrophilic characteristics (choline chloride + ethylene glycol or glycerol) and two eutectic solvents with hydrophobic characteristics (camphor + thymol or menthol). We used the Tait equation of state to correlate and calculate derived properties. Moreover, we modelled the mixtures with the PC-SAFT equation of state. The results showed that the hydrophilic solvents were more compact than the hydrophobic ones. The former exhibited an abnormal thermal behaviour of the isobaric thermal expansibility. The deviations in the correlation of densities with the thermodynamic model were between 0.5 and 3%. They were lower for the mixtures with weaker interactions

    Homogenization and enhancement for the G-equation

    Full text link
    We consider the so-called G-equation, a level set Hamilton-Jacobi equation, used as a sharp interface model for flame propagation, perturbed by an oscillatory advection in a spatio-temporal periodic environment. Assuming that the advection has suitably small spatial divergence, we prove that, as the size of the oscillations diminishes, the solutions homogenize (average out) and converge to the solution of an effective anisotropic first-order (spatio-temporal homogeneous) level set equation. Moreover we obtain a rate of convergence and show that, under certain conditions, the averaging enhances the velocity of the underlying front. We also prove that, at scale one, the level sets of the solutions of the oscillatory problem converge, at long times, to the Wulff shape associated with the effective Hamiltonian. Finally we also consider advection depending on position at the integral scale

    Out-of-equilibrium states as statistical equilibria of an effective dynamics

    Full text link
    We study the formation of coherent structures in a system with long-range interactions where particles moving on a circle interact through a repulsive cosine potential. Non equilibrium structures are shown to correspond to statistical equilibria of an effective dynamics, which is derived using averaging techniques. This simple behavior might be a prototype of others observed in more complicated systems with long-range interactions, like two-dimensional incompressible fluids or self-gravitating systems.Comment: 4 figure

    Asymptotics for turbulent flame speeds of the viscous G-equation enhanced by cellular and shear flows

    Full text link
    G-equations are well-known front propagation models in turbulent combustion and describe the front motion law in the form of local normal velocity equal to a constant (laminar speed) plus the normal projection of fluid velocity. In level set formulation, G-equations are Hamilton-Jacobi equations with convex (L1L^1 type) but non-coercive Hamiltonians. Viscous G-equations arise from either numerical approximations or regularizations by small diffusion. The nonlinear eigenvalue Hˉ\bar H from the cell problem of the viscous G-equation can be viewed as an approximation of the inviscid turbulent flame speed sTs_T. An important problem in turbulent combustion theory is to study properties of sTs_T, in particular how sTs_T depends on the flow amplitude AA. In this paper, we will study the behavior of Hˉ=Hˉ(A,d)\bar H=\bar H(A,d) as A+A\to +\infty at any fixed diffusion constant d>0d > 0. For the cellular flow, we show that Hˉ(A,d)O(logA)for all d>0. \bar H(A,d)\leq O(\sqrt {\mathrm {log}A}) \quad \text{for all $d>0$}. Compared with the inviscid G-equation (d=0d=0), the diffusion dramatically slows down the front propagation. For the shear flow, the limit \nit limA+Hˉ(A,d)A=λ(d)>0\lim_{A\to +\infty}{\bar H(A,d)\over A} = \lambda (d) >0 where λ(d)\lambda (d) is strictly decreasing in dd, and has zero derivative at d=0d=0. The linear growth law is also valid for sTs_T of the curvature dependent G-equation in shear flows.Comment: 27 pages. We improve the upper bound from no power growth to square root of log growt

    Integrated Care Intervention Supported by a Mobile Health Tool for Patients Using Noninvasive Ventilation at Home: Randomized Controlled Trial

    Get PDF
    Background: Home-based noninvasive ventilation has proven cost-effective. But, adherence to therapy still constitutes a common clinical problem. We hypothesized that a behavioral intervention supported by a mobile health (mHealth) app could enhance patient self-efficacy. It is widely accepted that mHealth-supported services can enhance productive interactions among the stakeholders involved in home-based respiratory therapies. Objective: This study aimed to measure changes in self-efficacy in patients with chronic respiratory failure due to diverse etiologies during a 3-month follow-up period after the intervention. Ancillary objectives were assessment of usability and acceptability of the mobile app as well as its potential contribution to collaborative work among stakeholders. Methods: A single-blind, single-center, randomized controlled trial was conducted between February 2019 and June 2019 with 67 adult patients with chronic respiratory failure undergoing home-based noninvasive ventilation. In the intervention group, a psychologist delivered a face-to-face motivational intervention. Follow-up was supported by a mobile app that allowed patients to report the number of hours of daily noninvasive ventilation use and problems with the therapy. Advice was automatically delivered by the mobile app in case of a reported problem. The control group received usual care. The primary outcome was the change in the Self Efficacy in Sleep Apnea questionnaire score. Secondary outcomes included app usability, app acceptability, continuity of care, person-centered care, and ventilatory parameters. Results: Self-efficacy was not significantly different in the intervention group after the intervention (before: mean 3.4, SD 0.6; after: mean 3.4, SD 0.5, P=.51). No changes were observed in adherence to therapy nor quality of life. Overall, the mHealth tool had a good usability score (mean 78 points) and high acceptance rate (mean score of 7.5/10 on a Likert scale). It was considered user-friendly (mean score of 8.2/10 on a Likert scale) and easy to use without assistance (mean score of 8.5/10 on a Likert scale). Patients also scored the perception of continuity of care and person-centered care as high. Conclusions: The integrated care intervention supported by the mobile app did not improve patient self-management. However, the high acceptance of the mobile app might indicate potential for enhanced communication among stakeholders. The study identified key elements required for mHealth tools to provide effective support to collaborative work and personalized care
    corecore