84 research outputs found

    Optimal design of hydraulic capsule pipelines transporting spherical capsules

    Get PDF
    Scarcity of fossil fuels is affecting efficiency of established modes of cargo transport within transportation industry. Extensive research is being carried out on improving efficiency of existing modes of cargo transport, as well as to develop alternative means of transporting goods. One such alternative method can be through the use of energy contained within fluid flowing in pipelines in order to transfer goods from one place to another. The present study focuses on the use of advanced numerical modelling tools to simulate the flow within Hydraulic Capsule Pipelines (HCPs) transporting Spherical Capsules with an aim of developing design equations. Hydraulic Capsule Pipeline is the term which refers to the transport of goods in hollow containers, typically of spherical or cylindrical shapes, termed as capsules, being carried along the pipeline by water. HCPs are being used in mineral industries and have potential for use in Oil & Gas sector. A novel modelling technique has been employed to carry out the investigations under various geometric and flow conditions within HCPs. Both qualitative and quantitative flow analysis has been carried out on the flow of spherical shaped capsules in an HCP for both on-shore and off-shore applications. Furthermore, based on Least-Cost Principle, an optimisation methodology has been developed for the design of single stage HCPs. The input to the optimisation model is the solid throughput required from the system, and the outputs are the optimal diameter of the HCPs and the pumping requirements for the capsule transporting system

    Understanding the Role of Nature Engagement in Supporting Health and Wellbeing during COVID-19

    Get PDF
    The importance of natural environments in supporting health and wellbeing has been well evi-denced in supporting positive mental and physical health outcomes, including during periods of crisis and stress. Given the disproportionate impacts of the COVID-19 pandemic have been greatest for those who are most vulnerable, understanding the role of natural environment and alternative forms of nature engagement in supporting health and wellbeing for vulnerable groups is important. This study explored how nature engagement supported health and wellbeing in those with a pre-existing health condition during the first UK lockdown. Semi-structured interviews were conducted with 17 adults with a pre-existing health condition and analysed using Interpretative Phenomenological Analysis (IPA). Four themes were identified: COVID-19 versus nature; Nature as an extension and replacement; Nature connectedness; and Therapeutic nature. The findings show the importance of nature in supporting health and wellbeing in those with a pre-existing health condition through engagement with private and public natural environments, micro-restorative opportunities, nature connection as an important pathway, and the therapeutic benefits of nature engagement. The present research extends the evidence-base beyond patterns of nature engagement to a deeper understanding of how those with existing health conditions perceived and interacted with nature in relation to their health and wellbeing during the first UK lockdown. Findings are discussed in relation to health supporting environments, micro-restorative opportunities, and policy implications

    Understanding the Role of Nature Engagement in Supporting Health and Wellbeing during COVID-19

    Get PDF
    The importance of natural environments in supporting health and wellbeing has been well evi-denced in supporting positive mental and physical health outcomes, including during periods of crisis and stress. Given the disproportionate impacts of the COVID-19 pandemic have been greatest for those who are most vulnerable, understanding the role of natural environment and alternative forms of nature engagement in supporting health and wellbeing for vulnerable groups is important. This study explored how nature engagement supported health and wellbeing in those with a pre-existing health condition during the first UK lockdown. Semi-structured interviews were conducted with 17 adults with a pre-existing health condition and analysed using Interpretative Phenomenological Analysis (IPA). Four themes were identified: COVID-19 versus nature; Nature as an extension and replacement; Nature connectedness; and Therapeutic nature. The findings show the importance of nature in supporting health and wellbeing in those with a pre-existing health condition through engagement with private and public natural environments, micro-restorative opportunities, nature connection as an important pathway, and the therapeutic benefits of nature engagement. The present research extends the evidence-base beyond patterns of nature engagement to a deeper understanding of how those with existing health conditions perceived and interacted with nature in relation to their health and wellbeing during the first UK lockdown. Findings are discussed in relation to health supporting environments, micro-restorative opportunities, and policy implications

    Development of a Design Methodology for Hydraulic Pipelines Carrying Rectangular Capsules

    Get PDF
    The scarcity of fossil fuels is affecting the efficiency of established modes of cargo transport within the transportation industry. Efforts have been made to develop innovative modes of transport that can be adopted for economic and environmental friendly operating systems. Solid material, for instance, can be packed in rectangular containers (commonly known as capsules), which can then be transported in different concentrations very effectively using the fluid energy in pipelines. For economical and efficient design of such systems, both the local flow characteristics and the global performance parameters need to be carefully investigated. Published literature is severely limited in establishing the effects of local flow features on system characteristics of Hydraulic Capsule Pipelines (HCPs). The present study focuses on using a well validated Computational Fluid Dynamics (CFD) tool to numerically simulate the solid-liquid mixture flow in both on-shore and off-shore HCPs applications including bends. Discrete Phase Modelling (DPM) has been employed to calculate the velocity of the rectangular capsules. Numerical predictions have been used to develop novel semi-empirical prediction models for pressure drop in HCPs, which have then been embedded into a robust and user-friendly pipeline optimisation methodology based on Least-Cost Principle

    Qualitative study of system-level factors related to genomic implementation

    Get PDF
    PURPOSE: Research on genomic medicine integration has focused on applications at the individual level, with less attention paid to implementation within clinical settings. Therefore, we conducted a qualitative study using the Consolidated Framework for Implementation Research (CFIR) to identify system-level factors that played a role in implementation of genomic medicine within Implementing GeNomics In PracTicE (IGNITE) Network projects. METHODS: Up to four study personnel, including principal investigators and study coordinators from each of six IGNITE projects, were interviewed using a semistructured interview guide that asked interviewees to describe study site(s), progress at each site, and factors facilitating or impeding project implementation. Interviews were coded following CFIR inner-setting constructs. RESULTS: Key barriers included (1) limitations in integrating genomic data and clinical decision support tools into electronic health records, (2) physician reluctance toward genomic research participation and clinical implementation due to a limited evidence base, (3) inadequate reimbursement for genomic medicine, (4) communication among and between investigators and clinicians, and (5) lack of clinical and leadership engagement. CONCLUSION: Implementation of genomic medicine is hindered by several system-level barriers to both research and practice. Addressing these barriers may serve as important facilitators for studying and implementing genomics in practice

    Thermal Runaway of Li-Ion Cells: How Internal Dynamics, Mass Ejection, and Heat Vary with Cell Geometry and Abuse Type

    Get PDF
    Thermal runaway of lithium-ion batteries can involve various types of failure mechanisms each with their own unique characteristics. Using fractional thermal runaway calorimetry and high-speed radiography, the response of three different geometries of cylindrical cell (18650, 21700, and D-cell) to different abuse mechanisms (thermal, internal short circuiting, and nail penetration) are quantified and statistically examined. Correlations between the geometry of cells and their thermal behavior are identified, such as increasing heat output per amp-hour (kJ Ah-1) of cells with increasing cell diameter during nail penetration. High-speed radiography reveals that the rate of thermal runaway propagation within cells is generally highest for nail penetration where there is a relative increase in rate of propagation with increasing diameter, compared to thermal or internal short-circuiting abuse. For a given cell model tested under the same conditions, a distribution of heat output is observed with a trend of increasing heat output with increased mass ejection. Finally, internal temperature measurements using thermocouples embedded in the penetrating nail are shown to be unreliable thus demonstrating the need for care when using thermocouples where the temperature is rapidly changing. All data used in this manuscript are open access through the NREL and NASA Battery Failure Databank

    Laboratory Analysis of Tularemia in Wild-Trapped, Commercially Traded Prairie Dogs, Texas, 2002

    Get PDF
    Oropharyngeal tularemia was identified as the cause of a die-off in captured wild prairie dogs at a commercial exotic animal facility in Texas. From this point source, Francisella tularensis–infected prairie dogs were traced to animals distributed to the Czech Republic and to a Texas pet shop. F. tularensis culture isolates were recovered tissue specimens from 63 prairie dogs, including one each from the secondary distribution sites. Molecular and biochemical subtyping indicated that all isolates were F. tularensis subsp. holarctica (Type B). Microagglutination assays detected antibodies against F. tularensis, with titers as great as 1:4,096 in some live animals. All seropositive animals remained culture positive, suggesting that prairie dogs may act as chronic carriers of F. tularensis. These findings demonstrate the need for additional studies of tularemia in prairie dogs, given the seriousness of the resulting disease, the fact that prairie dogs are sold commercially as pets, and the risk for pet-to-human transmission

    An ultrastructural investigation of tumors undergoing regression mediated by immunotherapy

    Get PDF
    While immunotherapy employing chimeric antigen receptor (CAR) T cells can be effective against a variety of tumor types, little is known about what happens within the tumor at an ultrastructural level during tumor regression. Here, we used transmission electron microscopy to investigate morphologic and cellular features of tumors responding to immunotherapy composed of adoptive transfer of dual-specific CAR T cells and a vaccine, supported by preconditioning irradiation and interleukin-2. Tumors responded rapidly, and large areas of cell death were apparent by 4 days after treatment. The pleomorphic and metabolically active nature of tumor cells and phagocytic activity of macrophages were apparent in electron microscopic images of tumors prior to treatment. Following treatment, morphologic features of various types of tumor cell death were observed, including apoptosis, paraptosis and necrosis. Large numbers of lipid droplets were evident in tumor cells undergoing apoptosis. Macrophages were the predominant leukocyte type infiltrating tumors before treatment. Macrophages decreased in frequency and number after treatment, whereas an increasing accumulation of neutrophils and T lymphocytes was observed following treatment. Phagocytic activity of macrophages and neutrophils was apparent, while T cells could be observed in close association with tumor cells with potential immunological synapses present. These observations highlight the cellular composition and ultrastructural appearance of tumors undergoing regression mediated by immunotherapy
    • …
    corecore