1,593 research outputs found
Recommended from our members
Binding to medium and long chain fatty acyls is a common property of HEAT and ARM repeat modules.
Covalent post-translational modification (PTM) of proteins with acyl groups of various carbon chain-lengths regulates diverse biological processes ranging from chromatin dynamics to subcellular localization. While the YEATS domain has been found to be a prominent reader of acetylation and other short acyl modifications, whether additional acyl-lysine reader domains exist, particularly for longer carbon chains, is unclear. Here, we employed a quantitative proteomic approach using various modified peptide baits to identify reader proteins of various acyl modifications. We discovered that proteins harboring HEAT and ARM repeats bind to lysine myristoylated peptides. Recombinant HEAT and ARM repeats bind to myristoylated peptides independent of the peptide sequence or the position of the myristoyl group. Indeed, HEAT and ARM repeats bind directly to medium- and long-chain free fatty acids (MCFA and LCFA). Lipidomic experiments suggest that MCFAs and LCFAs interact with HEAT and ARM repeat proteins in mammalian cells. Finally, treatment of cells with exogenous MCFAs and inhibitors of MCFA-CoA synthases increase the transactivation activity of the ARM repeat protein β-catenin. Taken together, our results suggest an unappreciated role for fatty acids in the regulation of proteins harboring HEAT or ARM repeats
Recommended from our members
Proteomic Profiling of γ-Secretase Substrates and Mapping of Substrate Requirements
The presenilin/γ-secretase complex, an unusual intramembrane aspartyl protease, plays an essential role in cellular signaling and membrane protein turnover. Its ability to liberate numerous intracellular signaling proteins from the membrane and also mediate the secretion of amyloid-β protein (Aβ) has made modulation of γ-secretase activity a therapeutic goal for cancer and Alzheimer disease. Although the proteolysis of the prototypical substrates Notch and β-amyloid precursor protein (APP) has been intensely studied, the full spectrum of substrates and the determinants that make a transmembrane protein a substrate remain unclear. Using an unbiased approach to substrate identification, we surveyed the proteome of a human cell line for targets of γ-secretase and found a relatively small population of new substrates, all of which are type I transmembrane proteins but have diverse biological roles. By comparing these substrates to type I proteins not regulated by γ-secretase, we determined that besides a short ectodomain, γ-secretase requires permissive transmembrane and cytoplasmic domains to bind and cleave its substrates. In addition, we provide evidence for at least two mechanisms that can target a substrate for γ cleavage: one in which a substrate with a short ectodomain is directly cleaved independent of sheddase association, and a second where a substrate requires ectodomain shedding to instruct subsequent γ-secretase processing. These findings expand our understanding of the mechanisms of substrate selection as well as the diverse cellular processes to which γ-secretase contributes
Implication of Mitochondrial Cytoprotection in Human Islet Isolation and Transplantation
Islet transplantation is a promising therapy for type 1 diabetes mellitus; however, success rates in achieving both short- and long-term insulin independence are not consistent, due in part to inconsistent islet quality and quantity caused by the complex nature and multistep process of islet isolation and transplantation. Since the introduction of the Edmonton Protocol in 2000, more attention has been placed on preserving mitochondrial function as increasing evidences suggest that impaired mitochondrial integrity can adversely affect clinical outcomes. Some recent studies have demonstrated that it is possible to achieve islet cytoprotection by maintaining mitochondrial function and subsequently to improve islet transplantation outcomes. However, the benefits of mitoprotection in many cases are controversial and the underlying mechanisms are unclear. This article summarizes the recent progress associated with mitochondrial cytoprotection in each step of the islet isolation and transplantation process, as well as islet potency and viability assays based on the measurement of mitochondrial integrity. In addition, we briefly discuss immunosuppression side effects on islet graft function and how transplant site selection affects islet engraftment and clinical outcomes
Recommended from our members
SETD3 is an actin histidine methyltransferase that prevents primary dystocia.
For more than 50 years, the methylation of mammalian actin at histidine 73 has been known to occur1. Despite the pervasiveness of His73 methylation, which we find is conserved in several model animals and plants, its function remains unclear and the enzyme that generates this modification is unknown. Here we identify SET domain protein 3 (SETD3) as the physiological actin His73 methyltransferase. Structural studies reveal that an extensive network of interactions clamps the actin peptide onto the surface of SETD3 to orient His73 correctly within the catalytic pocket and to facilitate methyl transfer. His73 methylation reduces the nucleotide-exchange rate on actin monomers and modestly accelerates the assembly of actin filaments. Mice that lack SETD3 show complete loss of actin His73 methylation in several tissues, and quantitative proteomics analysis shows that actin His73 methylation is the only detectable physiological substrate of SETD3. SETD3-deficient female mice have severely decreased litter sizes owing to primary maternal dystocia that is refractory to ecbolic induction agents. Furthermore, depletion of SETD3 impairs signal-induced contraction in primary human uterine smooth muscle cells. Together, our results identify a mammalian histidine methyltransferase and uncover a pivotal role for SETD3 and actin His73 methylation in the regulation of smooth muscle contractility. Our data also support the broader hypothesis that protein histidine methylation acts as a common regulatory mechanism
An efficient urine peptidomics workflow identifies chemically defined dietary gluten peptides from patients with celiac disease
Celiac disease (CeD) is an autoimmune disorder induced by consuming gluten proteins from wheat, barley, and rye. Glutens resist gastrointestinal proteolysis, resulting in peptides that elicit inflammation in patients with CeD. Despite well-established connections between glutens and CeD, chemically defined, bioavailable peptides produced from dietary proteins have never been identified from humans in an unbiased manner. This is largely attributable to technical challenges, impeding our knowledge of potentially diverse peptide species that encounter the immune system. Here, we develop a liquid chromatographic-mass spectrometric workflow for untargeted sequence analysis of the urinary peptidome. We detect over 600 distinct dietary peptides, of which ~35% have a CeD-relevant T cell epitope and ~5% are known to stimulate innate immune responses. Remarkably, gluten peptides from patients with CeD qualitatively and quantitatively differ from controls. Our results provide a new foundation for understanding gluten immunogenicity, improving CeD management, and characterizing the dietary and urinary peptidomes.Ministerio de Ciencia e Innovación SAF2017-83700-
Recommended from our members
GPR35 promotes glycolysis, proliferation, and oncogenic signaling by engaging with the sodium potassium pump.
The sodium potassium pump (Na/K-ATPase) ensures the electrochemical gradient of a cell through an energy-dependent process that consumes about one-third of regenerated ATP. We report that the G protein-coupled receptor GPR35 interacted with the α chain of Na/K-ATPase and promotes its ion transport and Src signaling activity in a ligand-independent manner. Deletion of Gpr35 increased baseline Ca2+ to maximal levels and reduced Src activation and overall metabolic activity in macrophages and intestinal epithelial cells (IECs). In contrast, a common T108M polymorphism in GPR35 was hypermorphic and had the opposite effects to Gpr35 deletion on Src activation and metabolic activity. The T108M polymorphism is associated with ulcerative colitis and primary sclerosing cholangitis, inflammatory diseases with a high cancer risk. GPR35 promoted homeostatic IEC turnover, whereas Gpr35 deletion or inhibition by a selective pepducin prevented inflammation-associated and spontaneous intestinal tumorigenesis in mice. Thus, GPR35 acts as a central signaling and metabolic pacesetter, which reveals an unexpected role of Na/K-ATPase in macrophage and IEC biology.European Research Council Consolidator Grant n° 648889 to A.K.
Scientia Fellowship (FP7-PEOPLE-2013-COFUND) grant agreement n° 609020 to G.S.
Addenbrooke’s Charitable Trust (ACT 25/16A) to J.E.E.
UniNA and Compagnia Di San Paolo ‘STAR program for young researchers’ fellowship to E.P
Structure-property relationships in protic ionic liquids : a study of solvent-solvent and solvent-solute Interactions
The ionic nature of a functionalized protic ionic liquid cannot be rationalized simply through the differences in aqueous proton dissociation constants between the acid precursor and the conjugate acid of the base precursor. The extent of proton transfer, i.e. the equilibrium ionicity, of a tertiary ammonium acetate protic ionic liquid can be significantly increased by introducing an hydroxyl functional group on the cation, compared to the alkyl or amino-functionalized analogues. This increase in apparent ionic nature correlates well with variations in solvent-solute and solvent-solvent interaction parameters, as well as with physicochemical properties such as viscosity
Structure-property relationships in protic ionic liquids : A thermochemical study
How does cation functionality influence the strength of intermolecular interactions in protic ionic liquids (PILs)? Quantifying the energetics of PILs can be an invaluable tool to answer this fundamental question. With this in view, we have determined the standard molar enthalpy of vaporization, Delta H_vap , and the standard molar enthalpy of formation, Delta H_f, of three tertiary ammonium acetate PILs with varying cation functionality, and of their corresponding precursor amines, through a combination of Calvet-drop microcalorimetry, solution calorimetry, and ab-initio calculations. The obtained results suggest that these PILs vaporize as their neutral acid and base precursors. We also found a strong correlation between Delta H_vap of the PILs and of their corresponding amines. This suggests that, within this series of PILs, the influence of cation modification on their cohesive energies follows a group additivity rule. Finally, no correlation between the Delta H_vap of PILs and the extent of proton transfer, as estimated from the difference in aqueous pKa between the precursor acid and the conjugate acid of the precursor base, was observed
'Pre-endoscopy point of care test (Simtomax- IgA/IgG-Deamidated Gliadin Peptide) for coeliac disease in iron deficiency anaemia: diagnostic accuracy and a cost saving economic model'.
BACKGROUND: International guidelines recommend coeliac serology in iron deficiency anaemia, and duodenal biopsy for those tested positive to detect coeliac disease. However, pre-endoscopy serology is often unavailable, thus committing endoscopists to take routine duodenal biopsies. Some endoscopists consider duodenal biopsy mandatory in anaemia to exclude other pathologies. We hypothesise that using a point of care test at endoscopy could fill this gap, by providing rapid results to target anaemic patients who require biopsies, and save costs by biopsy avoidance. We therefore assessed three key aspects to this hypothesis: 1) the availability of pre-endoscopy serology in anaemia; 2) the sensitivities and cost effectiveness of pre-endoscopy coeliac screening with Simtomax in anaemia; 3) whether other anaemia-related pathologies could be missed by this targeted-biopsy approach. METHODS: Group 1: pre-endoscopy serology availability was retrospectively analysed in a multicentre cohort of 934 anaemic patients at 4 UK hospitals. Group 2: the sensitivities of Simtomax, endomysial and tissue-transglutaminase antibodies were compared in 133 prospectively recruited patients with iron deficiency anaemia attending for a gastroscopy. The sensitivities were measured against duodenal histology as the reference standard in all patients. The cost effectiveness of Simtomax was calculated based on the number of biopsies that could have been avoided compared to an all-biopsy approach. Group 3: the duodenal histology of 153 patients presenting to a separate iron deficiency anaemia clinic were retrospectively reviewed. RESULTS: In group 1, serology was available in 361 (33.8 %) patients. In group 2, the sensitivity and negative predictive value (NPV) were 100 % and 100 % for Simtomax, 96.2 % and 98.9 % for IgA-TTG, and 84.6 % and 96.4 % for EMA respectively. In group 3, the duodenal histology found no causes for anaemia other than coeliac disease. CONCLUSION: Simtomax had excellent diagnostic accuracy in iron deficiency anaemia and was comparable to conventional serology. Duodenal biopsy did not identify any causes other than coeliac disease for iron deficiency anaemia, suggesting that biopsy avoidance in Simtomax negative anaemic patients is unlikely to miss other anaemia-related pathologies. Due to its 100 % NPV, Simtomax could reduce unnecessary biopsies by 66 % if only those with a positive Simtomax were biopsied, potentially saving £3690/100 gastroscopies. TRIAL REGISTRATION: The group 2 study was retrospectively registered with clinicaltrials.gov. Trial registration date: 13(th) July 2016; TRIAL REGISTRATION NUMBER: NCT02834429
Activation of the GPR35 pathway drives angiogenesis in the tumour microenvironment
Funder: NIHR Cambridge BRCObjective: Primary sclerosing cholangitis (PSC) is in 70% of cases associated with inflammatory bowel disease. The hypermorphic T108M variant of the orphan G protein-coupled receptor GPR35 increases risk for PSC and ulcerative colitis (UC), conditions strongly predisposing for inflammation-associated liver and colon cancer. Lack of GPR35 reduces tumour numbers in mouse models of spontaneous and colitis associated cancer. The tumour microenvironment substantially determines tumour growth, and tumour-associated macrophages are crucial for neovascularisation. We aim to understand the role of the GPR35 pathway in the tumour microenvironment of spontaneous and colitis-associated colon cancers. Design: Mice lacking GPR35 on their macrophages underwent models of spontaneous colon cancer or colitis-associated cancer. The role of tumour-associated macrophages was then assessed in biochemical and functional assays. Results: Here, we show that GPR35 on macrophages is a potent amplifier of tumour growth by stimulating neoangiogenesis and tumour tissue remodelling. Deletion of Gpr35 in macrophages profoundly reduces tumour growth in inflammation-associated and spontaneous tumour models caused by mutant tumour suppressor adenomatous polyposis coli. Neoangiogenesis and matrix metalloproteinase activity is promoted by GPR35 via Na/K-ATPase-dependent ion pumping and Src activation, and is selectively inhibited by a GPR35-specific pepducin. Supernatants from human inducible-pluripotent-stem-cell derived macrophages carrying the UC and PSC risk variant stimulate tube formation by enhancing the release of angiogenic factors. Conclusions: Activation of the GPR35 pathway promotes tumour growth via two separate routes, by directly augmenting proliferation in epithelial cells that express the receptor, and by coordinating macrophages’ ability to create a tumour-permissive environment
- …