11 research outputs found

    The Expression of TBC1 Domain Family, Member 4 (TBC1D4) in Skeletal Muscles of Insulin-Resistant Mice in Response to Sulforaphane

    Get PDF
    The Expression of TBC1 Domain Family, member 4 (TBC1D4) in Skeletal Muscles of Insulin-Resistant Mice in Response to Sulforaphane. Background: Obesity is commonly accompanied by impaired glucose homeostasis. Decreased glucose transport to the peripheral tissues, mainly skeletal muscle, leads to reduced total glucose disposal and hyperglycemia. TBC1D4 gene is involved in the trafficking of GLUT4 to the outer cell membrane in skeletal muscle. Sulforaphane (SFN) has been suggested as a new potential anti-diabetic compound acting by reducing blood glucose levels through mechanisms not fully understood (1). The aim of this study is to investigate the effects SFN on TBC1D4 and GLUT4 gene expression in skeletal muscles of DIO mice, in order to elucidate the mechanism(s) through which SFN improves glucose homeostasis. Methodology: C57BL/6 mice (n=20) were fed with a high fat diet (60%) for 16 weeks to generate diet induced obese (DIO) mice with body weights between 45–50 gm. Thereafter, DIO mice received either SFN (5mg/kg BW) (n=10) or vehicle (n=10) as controls daily by intraperitoneal injections for four weeks. Glucose tolerance test (1g/kg BW, IP) and insulin sensitivity test (ITT) were conducted (1 IU insulin/ g BW, IP route) at the beginning and end of the third week of the injection. At the end of 4 weeks of the injection, samples of blood and skeletal muscles of both hindlimbs were collected. The expression levels of GLUT4 and TBC1D4 genes were analyzed by qRT-PCR. Blood was also used for glucose, adiponectin and insulin measurements. Results: SFN-treated DIO mice had significantly lower non-fasting blood glucose levels than vehicle-treated mice (194.16 ± 14.12 vs. 147.44 ± 20.31 mg/dL, vehicle vs. SFN, p value=0.0003). Furthermore, GTT results indicate that the blood glucose levels at 120 minutes after glucose infusion in was (199.83±34.53 mg/dl vs. 138.55±221.78 mg/dl) for vehicle vs. SFN with p=0.0011 respectively. ITT showed that SFN treatment did not enhance insulin sensitivity in DIO mice. Additionally, SFN treatment did not significantly change the expression of TBC1D4, and GLUT4 genes in skeletal muscles compared to vehicle treatment (p values >0.05). Furthermore, SFN treatment did not significantly affect the systemic insulin (1.84±0.74 vs 1.54±0.55 ng/ml, p=0.436), or adiponectin (11.96 ±2.29 vs 14.4±3.33 ug/ml, p=0.551) levels in SFN vs. vehicle-treated DIO mice, respectively. Conclusion: SFN treatment improves glucose disposal in DIO mice, which is not linked to the gene expression of GLUT4 and TBC1D4 and its mechanism of glucose disposal in skeletal muscles. Furthermore, SFN treatment did not improve insulin level, and the insulin sensitizer hormone adiponectin as potential players for enhancing insulin sensitivity.QNRF-NPR

    Reinforcement Learning for Resource Allocation in Steerable Laser-based Optical Wireless Systems

    Full text link
    Vertical Cavity Surface Emitting Lasers (VCSELs) have demonstrated suitability for data transmission in indoor optical wireless communication (OWC) systems due to the high modulation bandwidth and low manufacturing cost of these sources. Specifically, resource allocation is one of the major challenges that can affect the performance of multi-user optical wireless systems. In this paper, an optimisation problem is formulated to optimally assign each user to an optical access point (AP) composed of multiple VCSELs within a VCSEL array at a certain time to maximise the signal to interference plus noise ratio (SINR). In this context, a mixed-integer linear programming (MILP) model is introduced to solve this optimisation problem. Despite the optimality of the MILP model, it is considered impractical due to its high complexity, high memory and full system information requirements. Therefore, reinforcement Learning (RL) is considered, which recently has been widely investigated as a practical solution for various optimization problems in cellular networks due to its ability to interact with environments with no previous experience. In particular, a Q-learning (QL) algorithm is investigated to perform resource management in a steerable VCSEL-based OWC systems. The results demonstrate the ability of the QL algorithm to achieve optimal solutions close to the MILP model. Moreover, the adoption of beam steering, using holograms implemented by exploiting liquid crystal devices, results in further enhancement in the performance of the network considered

    AI-Driven Resource Allocation in Optical Wireless Communication Systems

    Full text link
    Visible light communication (VLC) is a promising solution to satisfy the extreme demands of emerging applications. VLC offers bandwidth that is orders of magnitude higher than what is offered by the radio spectrum, hence making best use of the resources is not a trivial matter. There is a growing interest to make next generation communication networks intelligent using AI based tools to automate the resource management and adapt to variations in the network automatically as opposed to conventional handcrafted schemes based on mathematical models assuming prior knowledge of the network. In this article, a reinforcement learning (RL) scheme is developed to intelligently allocate resources of an optical wireless communication (OWC) system in a HetNet environment. The main goal is to maximise the total reward of the system which is the sum rate of all users. The results of the RL scheme are compared with that of an optimization scheme that is based on Mixed Integer Linear Programming (MILP) model.Comment: 6 pages, 2 Figures, Conferenc

    PROFILE OF OXIDATIVE STRESS GENES IN RESPONSE TO OBESITY TREATMENT

    Get PDF
    Background: Oxidative stress (OS) is an imbalance between free radical production and the antioxidants defense in the body. Previous studies demonstrated the correlation of OS to the increased risk of developing metabolic disorders such as obesity. Sulforaphane (SFN), a bioactive compound, can protect against inflammation and OS, thus an effective anti-obesity supplement. Aim: This study explores the impact of SNF on OS in diet induced obese (DIO) mice via profiling of OS genes and pathways in skeletal muscles related to the anti-obesity effect. Methods: Wild-type CD1 male mice and the knockout of nuclear factor (erythroid-derived 2) like 2 (NrF2) mice were fed a high-fat diet (HFD) for 16 weeks; to induce obesity. Subsequently, each group was subdivided into two subgroups and received either Vehicle (25?l) or SFN (5 mg/kg BW) for four weeks. Body weight was measured daily, and a glucose tolerance test (GTT) was performed after 21 days of treatment. Afterward, mice were decapitated, blood and tissue samples were collected and snap-frozen immediately. Total RNA was extracted from Skeletal muscle and epididymal white adipose tissue (eWAT), leptin expression was measured in (eWAT), and 84 OS genes in skeletal muscle were examined using RT-PCR. Results: Significant reduction in body weight in SFN treated WT mice, while no change in KO mice. Plasma glucose, leptin, and leptin gene expression (eWAT) were significantly reduced in the WT-DIO SFN treated group, while no changes were detected in KO mice. SFN decreases OS damage in skeletal muscles, such as lipid peroxidation and production of reactive oxygen species (ROS). Conclusion: This study demonstrated that SFN had lowered body weight in WT-DIO mice by decreasing OS damage in skeletal muscles through the NrF2 pathway and can be a potential anti-obesity drug

    Assessing Environmental Management Plan Implementation in Water Supply Construction Projects: Key Performance Indicators

    Get PDF
    Assessing the implementation of environmental management plans (EMPs) in construction projects is crucial for meeting environmental sustainability goals and reducing potential adverse impacts. By using performance indicators (PIs), stakeholders can objectively measure the performance of EMP implementation, identifying areas of success and areas that may require improvement. Therefore, this study aims to examine the PIs for assessing EMP implementation in water supply construction projects, using Saudi Arabia as a case study. Data from semi-structured interviews and a systematic literature review were used to develop a potential list of PIs. Then, the PIs were used to create a survey and distributed to industry professionals. Data from 112 respondents were analyzed using mean ranking analysis, the normalization method, exploratory factor analysis (EFA), and fuzzy synthetic evaluation (FSE). Eighteen critical PIs for assessing EMP implementation in water supply construction projects were identified, including public safety, road safety hazards, construction waste, clogged drainage, irregular flooding, the spilling of chemical substances, slope failures, soil erosion, landslide occurrence, increased schedule waste, changes in the color of bodies of water, oil/fuel spills, restricted site accessibility, the smell of run-off water, traffic accidents on construction sites, the spread of disease, changes in the color of run-off water, and overflowing silt traps. The EFA revealed that PIs can be grouped into three underlying constructs: fluid-related indicators, health and safety-related indicators, and site environment-related indicators. The FSE results confirmed that all PIs are between moderately critical to critical. This study’s significance lies in its examination of PIs that aim to improve the environmental performance of water supply construction projects. Understanding which indicators are most effective allows for targeted improvements, helping to minimize negative environmental impacts and ensuring sustainable practices. Finally, this study is a pioneer in examining the critical PIs for assessing EMP implementation in water supply construction projects

    Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey

    Get PDF
    Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10 years; 78.2% included were male with a median age of 37 years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020

    Sulforaphane Downregulates Hepatic Fibroblast Growth Factor 21 (FGF21) of Diet Induced Obese Mice

    Get PDF
    Background: Fibroblast growth factor 21 is a hormone-like protein that plays a critical role as an energy regulator. Sulforaphane (SFN) is expected to have potential therapeutic effects in treating obesity. This study aims to investigate the effect of SFN treatment on hepatic gene expression of FGF-21 of diet induced obese mice. Methods: CD1 male mice and two groups of lean and diet induced obesity (DIO) model after feeding a high fat diet were used. Afterward, both lean and DIO mice were treated for four weeks with either SFN (5mg/kg BW) (n=10) or Vehicle (n=10). After that, blood and liver samples were collected and analyzed. Hepatic FGF-21 gene expression was measured using qRT-PCR. Results: Treatment of DIO mice with SFN causes a significant reduction in body weight gain (15.42%) compared to DIO-vehicle group, which showed a weight gain by (3.86%), p-value<0.0001. In addition, SFN treatment to lean group did not affect body weight. DIO-SFN treated mice showed a significant reduction in fasting glucose, leptin, and insulin levels compared to DIO-vehicle treated group, p-value<0.05. Hepatic FGF-21 gene expression was significantly upregulated in DIO-vehicle compared to lean-vehicle mice with ˜ 3 folds, p-value<0.05. Treatment of DIO with SFN causes a significant downregulation of FGF-21 gene expression by ˜9 folds compared with DIO-vehicle treated group, p-value<0.05. Conclusions: Treatment of DIO mice with SFN causes downregulation of hepatic FGF21 expression in obese mice. The effects of SFN on FGF21 gene expression could be a direct effect or secondary to weight loss, which warrants further studies.QNRF, NPRP 9 -351-3-07

    Enteric pathogens modulate metabolic homeostasis in the Drosophila melanogaster host

    No full text
    On quotidian basis, living beings work out an armistice with their microbial flora and a scuffle with invading pathogens to maintain a normal state of health. Although producing virulence factors and escaping the host's immune machinery are the paramount tools used by pathogens in their “arm race” against the host; here, we provide insight into another facet of pathogenic embitterment by presenting evidence of the ability of enteric pathogens to exhibit pathogenicity through modulating metabolic homeostasis in Drosophila melanogaster. We report that Escherichia coli and Shigella sonnei orally infected flies exhibit lipid droplet deprivation from the fat body, irregular accumulation of lipid droplets in the midgut, and significant elevation of systemic glucose and triglyceride levels. Our findings indicate that these detected metabolic alterations in infected flies could be attributed to differential regulation of peptide hormones known to be crucial for lipid metabolism and insulin signaling. Gaining a proper understanding of infection-induced alterations succours in curbing the pathogenesis of enteric diseases and sets the stage for promising therapeutic approaches to quarry infection-induced metabolic disorders.This work was supported by Qatar University internal grant (QUST-1-CHS-2019-10) awarded to Layla Kamareddine. Fly stocked used in this study were purchased from Bloomington Drosophila Stock Center. Microscopy was performed at the Microscopy Facility in the Research Complex (H10) at Qatar University

    Ternary Ti-Mo-Fe Nanotubes as Efficient Photoanodes for Solar-Assisted Water Splitting

    No full text
    Designing efficient and stable water splitting photocatalysts is an intriguing challenge for energy conversion systems. We report on the optimal fabrication of perfectly aligned nanotubes on trimetallic Ti-Mo-Fe alloy with different compositions prepared via the combination of metallurgical control and facile electrochemical anodization in organic media. The X-ray diffraction (XRD) patterns revealed the presence of composite oxides of anatase TiO2and magnetite Fe3O4with better stability and crystallinity. With the optimal alloy composition Ti-(5.0 atom %) Mo-(5.0 atom %) Fe anodized for 16 h, enhanced conductivity, improved photocatalytic performance, and remarkable stability were achieved in comparison with Ti-(3.0 atom %) Mo-(1.0 atom %) Fe samples. Such optimized nanotube films attained an enhanced photocatalytic activity of ∼0.272 mA/cm2at 0.9 VSCE, which is approximately 4 times compared to the bare TiO2nanotubes fabricated under the same conditions (∼0.041 mA/cm2at 0.9 VSCE). That was mainly correlated with the emergence of Mo and Fe impurities within the lattice, providing excess charge carriers. Meanwhile, the nanotubes showed outstanding stability with a longer electron lifetime. Moreover, carrier density variations, lower charge transfer resistance, and charge carriers dynamics features were demonstrated via the Mott-Schottky and electrochemical impedance analyses
    corecore