78 research outputs found
PARISROC, a Photomultiplier Array Integrated Read Out Chip
PARISROC is a complete read out chip, in AMS SiGe 0.35 !m technology, for
photomultipliers array. It allows triggerless acquisition for next generation
neutrino experiments and it belongs to an R&D program funded by the French
national agency for research (ANR) called PMm2: ?Innovative electronics for
photodetectors array used in High Energy Physics and Astroparticles?
(ref.ANR-06-BLAN-0186). The ASIC (Application Specific Integrated Circuit)
integrates 16 independent and auto triggered channels with variable gain and
provides charge and time measurement by a Wilkinson ADC (Analog to Digital
Converter) and a 24-bit Counter. The charge measurement should be performed
from 1 up to 300 photo- electrons (p.e.) with a good linearity. The time
measurement allowed to a coarse time with a 24-bit counter at 10 MHz and a fine
time on a 100ns ramp to achieve a resolution of 1 ns. The ASIC sends out only
the relevant data through network cables to the central data storage. This
paper describes the front-end electronics ASIC called PARISROC.Comment: IEEE Nuclear Science Symposium an Medical Imaging Conference (2009
NSS/MIC
PARISROC, a photomultiplier array readout chip
PARISROC is a complete read out chip, in AMS SiGe 0.35 micron technology, for
photomultipliers array. It is a front-end electronics ASIC which allows
triggerless acquisition for the next generation of neutrino experiments. These
detectors have place in megaton size water tanks and will require very large
surface of photo-detection. An R & D program, funded by French national agency
for research and called PMm2, proposes to segment the very large surface of
photo-detection in macro pixels made of 16 photomultiplier tubes connected to
an autonomous front-end electronics. The ASIC allows triggerless acquisition
and only send out the relevant data by network to the central data storage.
This data management reduces considerably the cost of these detectors. This
paper describes the front-end electronics ASIC called PARISROC which integrates
totally independents 16 channels with a variable gain and provides charge and
time measurement with a 12-bit ADC and a 24-bits Counter.Comment: 1st international conference on Technology and Instrumentation in
Particle Physics (TIPP09), Tsukuba, Japan (2009
Fecal occult blood and fecal calprotectin as point-of-care markers of intestinal morbidity in Ugandan children with Schistosoma mansoni infection.
BACKGROUND: Calprotectin is a calcium-binding cytoplasmic protein found in neutrophils and increasingly used as a marker of bowel inflammation. Fecal occult blood (FOB) is also a dependable indicator of bowel morbidity. The objective of our study was to determine the applicability of these tests as surrogate markers of Schistosoma mansoni intestinal morbidity before and after treatment with praziquantel (PZQ).
METHODS: 216 children (ages 3-9 years old) from Buliisa District in Lake Albert, Uganda were examined and treated with PZQ at baseline in October 2012 with 211 of them re-examined 24 days later for S. mansoni and other soil transmitted helminths (STH). POC calprotectin and FOB assays were performed at both time points on a subset of children. Associations between the test results and infection were analysed by logistic regression.
RESULTS: Fecal calprotectin concentrations of 150-300 µg/g were associated with S. mansoni egg patent infection both at baseline and follow up (OR: 12.5 P = 0.05; OR: 6.8 P = 0.02). FOB had a very strong association with baseline anemia (OR: 9.2 P = 0.03) and medium and high egg intensity schistosomiasis at follow up (OR: 6.6 P = 0.03; OR: 51.3 P = 0.003). Both tests were strongly associated with heavy intensity S. mansoni infections. There was a significant decrease in FOB and calprotectin test positivity after PZQ treatment in those children who had egg patent schistosomiasis at baseline.
CONCLUSIONS: Both FOB and calprotectin rapid assays were found to correlate positively and strongly with egg patent S. mansoni infection with a positive ameloriation response after PZQ treatment indicative of short term reversion of morbidity. Both tests were appropriate for use in the field with excellent operational performance and reliability. Due to its lower-cost which makes its scale-up of use affordable, FOB could be immediately adopted as a monitoring tool for PC campaigns for efficacy evaluation before and after treatment
Progress on development of the new FDIRC PID detector
International audienceWe present a progress status of a new concept of PID detector called FDIRC, intended to be used at the SuperB experiment, which requires π/K separation up to a few GeV/c. The new photon camera is made of the solid fused-silica optics with a volume 25× smaller and speed increased by a factor of 10 compared to the BaBar DIRC, and therefore will be much less sensitive to electromagnetic and neutron background
Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VISTA-16 randomized clinical trial
IMPORTANCE: Secretory phospholipase A2(sPLA2) generates bioactive phospholipid products implicated in atherosclerosis. The sPLA2inhibitor varespladib has favorable effects on lipid and inflammatory markers; however, its effect on cardiovascular outcomes is unknown. OBJECTIVE: To determine the effects of sPLA2inhibition with varespladib on cardiovascular outcomes. DESIGN, SETTING, AND PARTICIPANTS: A double-blind, randomized, multicenter trial at 362 academic and community hospitals in Europe, Australia, New Zealand, India, and North America of 5145 patients randomized within 96 hours of presentation of an acute coronary syndrome (ACS) to either varespladib (n = 2572) or placebo (n = 2573) with enrollment between June 1, 2010, and March 7, 2012 (study termination on March 9, 2012). INTERVENTIONS: Participants were randomized to receive varespladib (500 mg) or placebo daily for 16 weeks, in addition to atorvastatin and other established therapies. MAIN OUTCOMES AND MEASURES: The primary efficacy measurewas a composite of cardiovascular mortality, nonfatal myocardial infarction (MI), nonfatal stroke, or unstable angina with evidence of ischemia requiring hospitalization at 16 weeks. Six-month survival status was also evaluated. RESULTS: At a prespecified interim analysis, including 212 primary end point events, the independent data and safety monitoring board recommended termination of the trial for futility and possible harm. The primary end point occurred in 136 patients (6.1%) treated with varespladib compared with 109 patients (5.1%) treated with placebo (hazard ratio [HR], 1.25; 95%CI, 0.97-1.61; log-rank P = .08). Varespladib was associated with a greater risk of MI (78 [3.4%] vs 47 [2.2%]; HR, 1.66; 95%CI, 1.16-2.39; log-rank P = .005). The composite secondary end point of cardiovascular mortality, MI, and stroke was observed in 107 patients (4.6%) in the varespladib group and 79 patients (3.8%) in the placebo group (HR, 1.36; 95% CI, 1.02-1.82; P = .04). CONCLUSIONS AND RELEVANCE: In patients with recent ACS, varespladib did not reduce the risk of recurrent cardiovascular events and significantly increased the risk of MI. The sPLA2inhibition with varespladib may be harmful and is not a useful strategy to reduce adverse cardiovascular outcomes after ACS. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01130246. Copyright 2014 American Medical Association. All rights reserved
Bi-allelic genetic variants in the translational GTPases GTPBP1 and GTPBP2 cause a distinct identical neurodevelopmental syndrome
The homologous genes GTPBP1 and GTPBP2 encode GTP-binding proteins 1 and 2, which are involved in ribosomal homeostasis. Pathogenic variants in GTPBP2 were recently shown to be an ultra-rare cause of neurodegenerative or neurodevelopmental disorders (NDDs). Until now, no human phenotype has been linked to GTPBP1. Here, we describe individuals carrying bi-allelic GTPBP1 variants that display an identical phenotype with GTPBP2 and characterize the overall spectrum of GTP-binding protein (1/2)-related disorders. In this study, 20 individuals from 16 families with distinct NDDs and syndromic facial features were investigated by whole-exome (WES) or whole-genome (WGS) sequencing. To assess the functional impact of the identified genetic variants, semi-quantitative PCR, western blot, and ribosome profiling assays were performed in fibroblasts from affected individuals. We also investigated the effect of reducing expression of CG2017, an ortholog of human GTPBP1/2, in the fruit fly Drosophila melanogaster. Individuals with bi-allelic GTPBP1 or GTPBP2 variants presented with microcephaly, profound neurodevelopmental impairment, pathognomonic craniofacial features, and ectodermal defects. Abnormal vision and/or hearing, progressive spasticity, choreoathetoid movements, refractory epilepsy, and brain atrophy were part of the core phenotype of this syndrome. Cell line studies identified a loss-of-function (LoF) impact of the disease-associated variants but no significant abnormalities on ribosome profiling. Reduced expression of CG2017 isoforms was associated with locomotor impairment in Drosophila. In conclusion, bi-allelic GTPBP1 and GTPBP2 LoF variants cause an identical, distinct neurodevelopmental syndrome. Mutant CG2017 knockout flies display motor impairment, highlighting the conserved role for GTP-binding proteins in CNS development across species
Strategies in a metallophyte species to cope with manganese excess
The effect of exposure to high Mn concentration
was studied in a metallophyte species, Erica
andevalensis, using hydroponic cultures with a range
of Mn concentrations (0.06, 100, 300, 500, and
700 mg L-1). At harvest, biomass production, element
uptake, and biochemical indicators of metal
stress (leaf pigments, organic acids, amino acids,
phenols, and activities of catalase, peroxidase, superoxide
dismutase) were determined in leaves and roots.
Increasing Mn concentrations led to a decrease in
biomass accumulation, and tip leaves chlorosis was
the only toxicity symptom detected. In a similar way,
photosynthetic pigments (chlorophylls a and b, and
carotenoids) were affected by high Mn levels. Among
organic acids, malate and oxalate contents in roots
showed a significant increase at the highest Mn
concentration, while in leaves, Mn led to an increasing
trend in citrate and malate contents. An increase of Mn also induced an increase in superoxide dismutase
activity in roots and catalase activity in leaves. As
well, significant changes in free amino acids were
induced by Mn concentrations higher than
300 mg L-1, especially in roots. No significant
changes in phenolic compounds were observed in
the leaves, but root phenolics were significantly
increased by increasing Mn concentrations in treatments.
When Fe supply was increased 10 and 20 times
(7–14 mg Fe L-1 as Fe-EDDHA) in the nutrient
solutions at the highest Mn concentration
(700 mg Mn L-1), it led to significant increases in
photosynthetic pigments and biomass accumulation.
Manganese was mostly accumulated in the roots, and
the species was essentially a Mn excluder. However,
considering the high leaf Mn concentration recorded
without toxicity symptoms, E. andevalensis might be
rated as a Mn-tolerant speciesinfo:eu-repo/semantics/publishedVersio
Response of a CMS HGCAL silicon-pad electromagnetic calorimeter prototype to 20-300 GeV positrons
The Compact Muon Solenoid Collaboration is designing a new high-granularity
endcap calorimeter, HGCAL, to be installed later this decade. As part of this
development work, a prototype system was built, with an electromagnetic section
consisting of 14 double-sided structures, providing 28 sampling layers. Each
sampling layer has an hexagonal module, where a multipad large-area silicon
sensor is glued between an electronics circuit board and a metal baseplate. The
sensor pads of approximately 1 cm are wire-bonded to the circuit board and
are readout by custom integrated circuits. The prototype was extensively tested
with beams at CERN's Super Proton Synchrotron in 2018. Based on the data
collected with beams of positrons, with energies ranging from 20 to 300 GeV,
measurements of the energy resolution and linearity, the position and angular
resolutions, and the shower shapes are presented and compared to a detailed
Geant4 simulation
Performance of the CMS High Granularity Calorimeter prototype to charged pion beams of 20300 GeV/c
The upgrade of the CMS experiment for the high luminosity operation of the
LHC comprises the replacement of the current endcap calorimeter by a high
granularity sampling calorimeter (HGCAL). The electromagnetic section of the
HGCAL is based on silicon sensors interspersed between lead and copper (or
copper tungsten) absorbers. The hadronic section uses layers of stainless steel
as an absorbing medium and silicon sensors as an active medium in the regions
of high radiation exposure, and scintillator tiles directly readout by silicon
photomultipliers in the remaining regions. As part of the development of the
detector and its readout electronic components, a section of a silicon-based
HGCAL prototype detector along with a section of the CALICE AHCAL prototype was
exposed to muons, electrons and charged pions in beam test experiments at the
H2 beamline at the CERN SPS in October 2018. The AHCAL uses the same technology
as foreseen for the HGCAL but with much finer longitudinal segmentation. The
performance of the calorimeters in terms of energy response and resolution,
longitudinal and transverse shower profiles is studied using negatively charged
pions, and is compared to GEANT4 predictions. This is the first report
summarizing results of hadronic showers measured by the HGCAL prototype using
beam test data.Comment: To be submitted to JINS
Titanium dioxide nanoparticles promote arrhythmias via a direct interaction with rat cardiac tissue
BackgroundIn light of recent developments in nanotechnologies, interest is growing to better comprehend the interaction of nanoparticles with body tissues, in particular within the cardiovascular system. Attention has recently focused on the link between environmental pollution and cardiovascular diseases. Nanoparticles <50 nm in size are known to pass the alveolar¿pulmonary barrier, enter into bloodstream and induce inflammation, but the direct pathogenic mechanisms still need to be evaluated. We thus focused our attention on titanium dioxide (TiO2) nanoparticles, the most diffuse nanomaterial in polluted environments and one generally considered inert for the human body.MethodsWe conducted functional studies on isolated adult rat cardiomyocytes exposed acutely in vitro to TiO2 and on healthy rats administered a single dose of 2 mg/Kg TiO2 NPs via the trachea. Transmission electron microscopy was used to verify the actual presence of TiO2 nanoparticles within cardiac tissue, toxicological assays were used to assess lipid peroxidation and DNA tissue damage, and an in silico method was used to model the effect on action potential.ResultsVentricular myocytes exposed in vitro to TiO2 had significantly reduced action potential duration, impairment of sarcomere shortening and decreased stability of resting membrane potential. In vivo, a single intra-tracheal administration of saline solution containing TiO2 nanoparticles increased cardiac conduction velocity and tissue excitability, resulting in an enhanced propensity for inducible arrhythmias. Computational modeling of ventricular action potential indicated that a membrane leakage could account for the nanoparticle-induced effects measured on real cardiomyocytes.ConclusionsAcute exposure to TiO2 nanoparticles acutely alters cardiac excitability and increases the likelihood of arrhythmic events
- …