974 research outputs found

    Increased bacterial growth efficiency with environmental variability: results from DOC degradation by bacteria in pure culture experiments.

    Get PDF
    This paper assesses how considering variation in DOC availability and cell maintenance in bacterial models affects Bacterial Growth Efficiency (BGE) estimations. For this purpose, we conducted two biodegradation experiments simultaneously. In experiment one, a given amount of substrate was added to the culture at the start of the experiment whilst in experiment two, the same amount of substrate was added, but using periodic pulses over the time course of the experiment. Three bacterial models, with different levels of complexity, (the Monod, Marr-Pirt and the dynamic energy budget – DEB – models), were used and calibrated using the above experiments. BGE has been estimated using the experimental values obtained from discrete samples and from model generated data. Cell maintenance was derived experimentally, from respiration rate measurements. The results showed that the Monod model did not reproduce the experimental data accurately, whereas the Marr-Pirt and DEB models demonstrated a good level of reproducibility, probably because cell maintenance was built into their formula. Whatever estimation method was used, the BGE value was always higher in experiment two (the periodically pulsed substrate) as compared to the initially one-pulsed-substrate experiment. Moreover, BGE values estimated without considering cell maintenance (Monod model and empirical formula) were always smaller than BGE values obtained from models taking cell maintenance into account. Since BGE is commonly estimated using constant experimental systems and ignore maintenance, we conclude that these typical methods underestimate BGE values. On a larger scale, and for biogeochemical cycles, this would lead to the conclusion that, for a given DOC supply rate and a given DOC consumption rate, these BGE estimation methods overestimate the role of bacterioplankton as CO<sub>2</sub> producers

    Maintenance of GLUT4 expression in smooth muscle prevents hypertension‐induced changes in vascular reactivity

    Full text link
    Previous studies have shown that expression of GLUT4 is decreased in arterial smooth muscle of hypertensive rats and mice and that total body overexpression of GLUT4 in mice prevents enhanced arterial reactivity in hypertension. To demonstrate that the effect of GLUT4 overexpression on vascular responses is dependent on vascular smooth muscle GLUT4 rather than on some systemic effect we developed and tested smooth‐muscle‐specific GLUT4 transgenic mice (SMG4). When made hypertensive with angiotensin II, both wild‐type and SMG4 mice exhibited similarly increased systolic blood pressure. Responsiveness to phenylephrine, serotonin, and prostaglandin F2α was significantly increased in endothelium‐intact aortic rings from hypertensive wild‐type mice but not in aortae of SMG4 mice. Inhibition of Rho‐kinase equally reduced serotonin‐stimulated contractility in aortae of hypertensive wild‐type and SMG4‐mice. In addition, acetylcholine‐stimulated relaxation was significantly decreased in aortic rings of hypertensive wild‐type mice, but not in rings of SMG4 mice. Inhibition of either prostacylin receptors or cyclooxygenase‐2 reduced relaxation in rings of hypertensive SMG4 mice. Inhibition of cyclooxygenase‐2 had no effect on relaxation in rings of hypertensive wild‐type mice. Cyclooxygenase‐2 protein expression was decreased in hypertensive wild‐type aortae but not in hypertensive SMG4 aortae compared to nonhypertensive controls. Our results demonstrate that smooth muscle expression of GLUT4 exerts a major effect on smooth muscle contractile responses and endothelium‐dependent vasorelaxation and that normal expression of GLUT4 in vascular smooth muscle is required for appropriate smooth muscle and endothelial responses.e12299In the smooth muscle of aortae of hypertensive mice, expression of GLUT4 is decreased. Maintenance of aortic smooth muscle GLUT4 expression prevents hypertension‐mediated changes in vasomotor response. These effects include decreasing/preventing endothelial dysfunction.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110755/1/phy212299.pd

    The microbial diversity of the Su Bentu cave, Italy and the influence of human exploration.

    Get PDF
    Introduction: The microbial diversity in the Su Bentu Cave (Sardinia, Italy) was investigated by means of Illumina MiSeq analysis. The hypogean environment is of great interest for astrobiological research as cave conditions may resemble those in extra-terrestrial regions. Furthermore, they hold high potential to identify novel, extremely adapted organisms to severely oligo-trophic habitats. However, the influence of human is not neglectable and in-depth investigations are needed to determine the impact of exploration on an otherwise mostly pristine ecosystem. The cave investigated in this study develops for several kilometres into the mountain, two hundred metres below the topographic surface and is characterized by a strong air circulation. Its structure is composed of huge passages carved in limestone where an ephemeral underground stream creates some lakes, close to which seven samples of visible calcite rafts, manganese deposits and moonmilk (a hydrated calcium carbonate speleothem), were sampled during an expedition in 2014. Other samples were re-trieved from a frequently used campsite and from some dry cave passages leading deeper into the cave

    Correction of stratospheric age-of-air derived from SF 6 for the effect of chemical sinks

    Get PDF
    Observational monitoring of the stratospheric transport circulation, the Brewer-Dobson-Circulation (BDC), is crucial to estimate any decadal to long-term changes therein, a prerequisite to interpret trends in stratospheric composition and to constrain the consequential impacts on climate. The transport time along the BDC (i.e., the mean age of stratospheric air, AoA) can best be deduced from trace gas measurements of tracers which increase linearly in time and are chemically passive. The gas SF6 is often used to deduce AoA, because it has been increasing monotonically since the ~1950s, and previously its chemical sinks in the mesosphere have been assumed to be negligible for AoA estimates. However, recent studies have shown that the chemical sinks of SF6 are stronger than assumed, and become increasingly relevant with rising SF6 concentrations. To adjust biases in AoA that result from the chemical SF6 sinks, we here propose a simple correction scheme for SF6-based AoA estimates accounting for the time-dependent effects of chemical sinks. The correction scheme is based on theoretical considerations with idealized assumptions, resulting in a relation between ideal AoA and apparent AoA which is a function of the tropospheric reference time-series of SF6 and of the AoA-dependent effective lifetime of SF6. The correction method is thoroughly tested within a self-consistent data set from a climate model that includes explicit calculation of chemical SF6 sinks. It is shown within the model that the correction successfully reduces biases in SF6-based AoA to less than 5 % for mean ages below 5 years. Tests with using only sub-sampled data for deriving the fit coefficients show that applying the correction scheme even with imperfect knowledge of the sink is far superior to not applying a sink correction. Further, we show that based on currently available measurements, we are not able to constrain the fit parameters of the correction scheme based on observational data alone. However, the model-based correction curve lies within the observational uncertainty, and we thus recommend to use the model-derived fit coefficients until more high-quality measurements will be able to further constrain the correction scheme. The application of the correction scheme to AoA from satellites and in-situ data suggests that it is highly beneficial to reconcile different observational estimates of mean AoA

    Microbiome dynamics during the HI-SEAS IV mission, and implications for future crewed missions beyond Earth.

    Get PDF
    Background: Human health is closely interconnected with its microbiome. Resilient microbiomes in, on, and around the human body will be key for safe and successful long-term space travel. However, longitudinal dynamics of microbiomes inside confined built environments are still poorly understood. Herein, we used the Hawaii Space Exploration Analog and Simulation IV (HI-SEAS IV) mission, a 1 year-long isolation study, to investigate microbial transfer between crew and habitat, in order to understand adverse developments which may occur in a future outpost on the Moon or Mars. Results: Longitudinal 16S rRNA gene profiles, as well as quantitative observations, revealed significant differences in microbial diversity, abundance, and composition between samples of the built environment and its crew. The microbiome composition and diversity associated with abiotic surfaces was found to be rather stable, whereas the microbial skin profiles of individual crew members were highly dynamic, resulting in an increased microbiome diversity at the end of the isolation period. The skin microbiome dynamics were especially pronounced by a regular transfer of the indicator species Methanobrevibacter between crew members within the first 200 days. Quantitative information was used to track the propagation of antimicrobial resistance in the habitat. Together with functional and phenotypic predictions, quantitative and qualitative data supported the observation of a delayed longitudinal microbial homogenization between crew and habitat surfaces which was mainly caused by a malfunctioning sanitary facility. Conclusions: This study highlights main routes of microbial transfer, interaction of the crew, and origins of microbial dynamics in an isolated environment. We identify key targets of microbial monitoring, and emphasize the need for defined baselines of microbiome diversity and abundance on surfaces and crew skin. Targeted manipulation to counteract adverse developments of the microbiome could be a highly important strategy to ensure safety during future space endeavors

    Size-resolved aerosol emission factors and new particle formation/growth activity occurring in Mexico City during the MILAGRO 2006 Campaign

    Get PDF
    Measurements of the aerosol size distribution from 11 nm to 2.5 microns were made in Mexico City in March 2006, during the MILAGRO (Megacity Initiative: Local and Global Research Observations) field campaign. Observations at the urban supersite, referred to as T0, could often be characterized by morning conditions with high particle mass concentrations, low mixing heights, and highly correlated particle number and CO<sub>2</sub> concentrations, indicative that particle number is controlled by primary emissions. Average size-resolved and total number- and volume-based emission factors for combustion sources impacting T0 have been determined using a comparison of peak sizes in particle number and CO<sub>2</sub> concentration. Peaks are determined by subtracting the measured concentration from a calculated baseline concentration time series. The number emission and volume emission factors for particles from 11 nm to 494 nm are 1.56 × 10<sup>15</sup> particles, and 9.48 × 10<sup>11</sup> cubic microns per kg of carbon, respectively. The uncertainty of the number emission factor is approximately plus or minus 50 %. The mode of the number emission factor was between 25 and 32 nm, while the mode of the volume factor was between 0.25 and 0.32 microns. These emission factors are reported as log normal model parameters and are compared with multiple emission factors from the literature. In Mexico City in the afternoon, the CO<sub>2</sub> concentration drops during ventilation of the polluted layer, and the coupling between CO<sub>2</sub> and particle number breaks down, especially during new particle formation events when particle number is no longer controlled by primary emissions. Using measurements of particle number and CO<sub>2</sub> taken aboard the NASA DC-8, the determined primary emission factor was applied to the Mexico City Metropolitan Area (MCMA) plume to quantify the degree of secondary particle formation in the plume; the primary emission factor accounts for less than 50 % of the total particle number and the surplus particle count is not correlated with photochemical age. Primary particle volume and number in the size range 0.1–2 ÎŒm are similarly too low to explain the observed volume distribution. Contrary to the case for number, the apparent secondary volume increases with photochemical age. The size distribution of the apparent increase, with a mode at ~250 nm, is reported

    Increased plasma vaspin concentration in patients with sepsis: an exploratory examination

    Get PDF
    Introduction: Vaspin (visceral adipose tissue-derived serpin) was first described as an insulin-sensitizing adipose tissue hormone. Recently its anti-inflammatory function has been demonstrated. Since no appropriate data is available yet, we sought to investigate the plasma concentrations of vaspin in sepsis. Materials and methods: 57 patients in intensive care, fulfilling the ACCP/SCCM criteria for sepsis, were prospectively included in our exploratory study. The control group consisted of 48 critically ill patients, receiving intensive care after trauma or major surgery. Patients were matched by age, sex, weight and existence of diabetes before statistical analysis. Blood samples were collected on the day of diagnosis. Vaspin plasma concentrations were measured using a commercially available enzyme-linked immunosorbent assay. Results: Vaspin concentrations were significantly higher in septic patients compared to the control group (0.3 (0.1-0.4) ng/mL vs. 0.1 (0.0-0.3) ng/mL, respectively; P < 0.001). Vaspin concentration showed weak positive correlation with concentration of C-reactive protein (CRP) (r = 0.31, P = 0.002) as well as with SAPS II (r = 0.34, P = 0.002) and maximum of SOFA (r = 0.39, P < 0.001) scoring systems, as tested for the overall study population. Conclusion: In the sepsis group, vaspin plasma concentration was about three-fold as high as in the median surgical control group. We demonstrated a weak positive correlation between vaspin and CRP concentration, as well as with two scoring systems commonly used in intensive care settings. Although there seems to be some connection between vaspin and inflammation, its role in human sepsis needs to be evaluated further

    Increased plasma zonulin in patients with sepsis

    Get PDF
    Introduction: Zonulin is a eukaryotic protein structurally similar to Vibrio cholerae’s zonula occludens toxin. It plays an important role in the opening of small intestine tight junctions. The loss of gut wall integrity during sepsis might be pivotal and has been described in various experimental as well as human studies. Increased levels of zonulin could be demonstrated in diseases associated with increased intestinal inflammation, such as celiac disease and type 1 diabetes. We therefore investigated the role of plasma levels of zonulin in patients with sepsis as a non-invasive marker of gut wall integrity. Materials and methods: Plasma level of zonulin was measured in 25 patients with sepsis, severe sepsis or septic shock according to ACCP/SCCM criteria at the first day of diagnosed sepsis. 18 non-septic post-surgical ICU-patients and 20 healthy volunteers served as control. Plasma levels were determined by using commercially available ELISA kit. Data are given as median and interquartile range (IQR). Results: Significantly higher plasma concentration of zonulin were found in the sepsis group: 6.61 ng/mL (IQR 3.51-9.46), as compared to the to the post-surgical control group: 3.40 ng/mL (IQR 2.14-5.70) (P = 0.025), as well as to the healthy group: 3.55 ng/mL (IQR 3.14-4.14) (P = 0.008). Conclusion: We were able demonstrate elevated levels of plasma zonulin, a potential marker of intestinal permeability in septic patients. Increased zonulin may serve as an additional mechanism for the observed increased intestinal permeability during sepsis and SIRS
    • 

    corecore