2,462 research outputs found
Introduction: Politics and Religion in Amazonia
The history of the papers in this special issue of Tipiti
Rayleigh scattering in the transit spectrum of HD 189733b
The transit spectrum of the exoplanet HD 189733b has recently been obtained
between 0.55 and 1.05 microns. Here we present an analysis of this spectrum. We
develop first-order equations to interpret absorption spectra. In the case of
HD 189733b, we show that the observed slope of the absorption as a function of
wavelength is characteristic of extinction proportional to the inverse of the
fourth power of the wavelength (lambda^-4). Assuming an extinction dominated by
Rayleigh scattering, we derive an atmospheric temperature of 1340+/-150 K. If
molecular hydrogen is responsible for the Rayleigh scattering, the atmospheric
pressure at the planetary characteristic radius of 0.1564 stellar radius must
be 410+/-30 mbar. However the preferred scenario is scattering by condensate
particles. Using the Mie approximation, we find that the particles must have a
low value for the imaginary part of the refraction index. We identify MgSiO3 as
a possible abundant condensate whose particle size must be between 0.01 and 0.1
microns. For this condensate, assuming solar abundance, the pressure at 0.1564
stellar radius is found to be between a few microbars and few millibars, and
the temperature is found to be in the range 1340-1540 K, and both depend on the
particle size.Comment: Accepted for publication in A&A Lette
Ground-based photometry of the 21-day Neptune HD106315c
Space-based transit surveys such as K2 and TESS allow the detection of small
transiting planets with orbital periods beyond 10 days. Few of these warm
Neptunes are currently known around stars bright enough to allow for detailed
follow-up observations dedicated to their atmospheric characterization. The
21-day period and 3.95 planet HD106315c has been discovered based on
the observation of two of its transits by K2. We have observed HD106315 using
the 1.2m Euler telescope equipped with the EulerCam camera on two instances to
confirm the transit using broad band photometry and refine the planetary
period. Based on two observed transits of HD106315c, we detect its 1 mmag
transit and obtain a precise measurement of the planetary ephemerids, which are
critical for planning further follow-up observations. We have used the attained
precision together with the predicted yield from the TESS mission to evaluate
the potential for ground-based confirmation of Neptune-sized planets found by
TESS. We find that 1-meter-class telescopes on the ground equipped with precise
photometers could substantially contribute to the follow-up of 162 TESS
candidates orbiting stars with magnitudes of . Out of these, 74
planets orbit stars with and 12 planets orbit , which
makes these candidates high-priority objects for atmospheric characterization
with high-end instrumentation.Comment: Published in A&A letters, 4 pages, 3 figure
Sparse aperture masking at the VLT II. Detection limits for the eight debris disks stars Pic, AU Mic, 49 Cet, Tel, Fomalhaut, g Lup, HD181327 and HR8799
Context. The formation of planetary systems is a common, yet complex
mechanism. Numerous stars have been identified to possess a debris disk, a
proto-planetary disk or a planetary system. The understanding of such formation
process requires the study of debris disks. These targets are substantial and
particularly suitable for optical and infrared observations. Sparse Aperture
masking (SAM) is a high angular resolution technique strongly contributing to
probe the region from 30 to 200 mas around the stars. This area is usually
unreachable with classical imaging, and the technique also remains highly
competitive compared to vortex coronagraphy. Aims. We aim to study debris disks
with aperture masking to probe the close environment of the stars. Our goal is
either to find low mass companions, or to set detection limits. Methods. We
observed eight stars presenting debris disks ( Pictoris, AU
Microscopii, 49 Ceti, Telescopii, Fomalhaut, g Lupi, HD181327 and
HR8799) with SAM technique on the NaCo instrument at the VLT. Results. No close
companions were detected using closure phase information under 0.5 of
separation from the parent stars. We obtained magnitude detection limits that
we converted to Jupiter masses detection limits using theoretical isochrones
from evolutionary models. Conclusions. We derived upper mass limits on the
presence of companions in the area of few times the diffraction limit of the
telescope around each target star.Comment: 7 pages, All magnitude detection limits maps are only available in
electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr
(130.79.128.5
A giant planet imaged in the disk of the young star Beta Pictoris
Here we show that the ~10 Myr Beta Pictoris system hosts a massive giant
planet, Beta Pictoris b, located 8 to 15 AU from the star. This result confirms
that gas giant planets form rapidly within disks and validates the use of disk
structures as fingerprints of embedded planets. Among the few planets already
imaged, Beta Pictoris b is the closest to its parent star. Its short period
could allow recording the full orbit within 17 years.Comment: 4 pages, 2 figures. Published online 10 June 2010;
10.1126/science.1187187. To appear in Scienc
High resolution imaging of young M-type stars of the solar neighborhood: Probing the existence of companions down to the mass of Jupiter
Context. High contrast imaging is a powerful technique to search for gas
giant planets and brown dwarfs orbiting at separation larger than several AU.
Around solar-type stars, giant planets are expected to form by core accretion
or by gravitational instability, but since core accretion is increasingly
difficult as the primary star becomes lighter, gravitational instability would
be the a probable formation scenario for yet-to-be-found distant giant planets
around a low-mass star. A systematic survey for such planets around M dwarfs
would therefore provide a direct test of the efficiency of gravitational
instability. Aims. We search for gas giant planets orbiting around late-type
stars and brown dwarfs of the solar neighborhood. Methods. We obtained deep
high resolution images of 16 targets with the adaptive optic system of VLT-NACO
in the Lp band, using direct imaging and angular differential imaging. This is
currently the largest and deepest survey for Jupiter-mass planets around
Mdwarfs. We developed and used an integrated reduction and analysis pipeline to
reduce the images and derive our 2D detection limits for each target. The
typical contrast achieved is about 9 magnitudes at 0.5" and 11 magnitudes
beyond 1". For each target we also determine the probability of detecting a
planet of a given mass at a given separation in our images. Results. We derived
accurate detection probabilities for planetary companions, taking into account
orbital projection effects, with in average more than 50% probability to detect
a 3MJup companion at 10AU and a 1.5MJup companion at 20AU, bringing strong
constraints on the existence of Jupiter-mass planets around this sample of
young M-dwarfs.Comment: Accepted for publication in A&
The Spitzer search for the transits of HARPS low-mass planets - II. Null results for 19 planets
Short-period super-Earths and Neptunes are now known to be very frequent
around solar-type stars. Improving our understanding of these mysterious
planets requires the detection of a significant sample of objects suitable for
detailed characterization. Searching for the transits of the low-mass planets
detected by Doppler surveys is a straightforward way to achieve this goal.
Indeed, Doppler surveys target the most nearby main-sequence stars, they
regularly detect close-in low-mass planets with significant transit
probability, and their radial velocity data constrain strongly the ephemeris of
possible transits. In this context, we initiated in 2010 an ambitious Spitzer
multi-Cycle transit search project that targeted 25 low-mass planets detected
by radial velocity, focusing mainly on the shortest-period planets detected by
the HARPS spectrograph. We report here null results for 19 targets of the
project. For 16 planets out of 19, a transiting configuration is strongly
disfavored or firmly rejected by our data for most planetary compositions. We
derive a posterior probability of 83% that none of the probed 19 planets
transits (for a prior probability of 22%), which still leaves a significant
probability of 17% that at least one of them does transit. Globally, our
Spitzer project revealed or confirmed transits for three of its 25 targeted
planets, and discarded or disfavored the transiting nature of 20 of them. Our
light curves demonstrate for Warm Spitzer excellent photometric precisions: for
14 targets out of 19, we were able to reach standard deviations that were
better than 50ppm per 30 min intervals. Combined with its Earth-trailing orbit,
which makes it capable of pointing any star in the sky and to monitor it
continuously for days, this work confirms Spitzer as an optimal instrument to
detect sub-mmag-deep transits on the bright nearby stars targeted by Doppler
surveys.Comment: Accepted for publication in Astronomy and Astrophysics. 23 pages, 21
figure
The thermal conductivity reduction in HgTe/CdTe superlattices
The techniques used previously to calculate the three-fold thermal
conductivity reduction due to phonon dispersion in GaAs/AlAs superlattices
(SLs) are applied to HgTe/CdTe SLs. The reduction factor is approximately the
same, indicating that this SL may be applicable both as a photodetector and a
thermoelectric cooler.Comment: 5 pages, 2 figures; to be published in Journal of Applied Physic
Temporal variations in the evaporating atmosphere of the exoplanet HD 189733b
Atmospheric escape has been detected from the exoplanet HD 209458b through
transit observations of the hydrogen Lyman-alpha line. Here we present
spectrally resolved Lyman-alpha transit observations of the exoplanet HD
189733b at two different epochs. These HST/STIS observations show for the first
time, that there are significant temporal variations in the physical conditions
of an evaporating planetary atmosphere. While atmospheric hydrogen is not
detected in the first epoch observations, it is observed at the second epoch,
producing a transit absorption depth of 14.4+/-3.6% between velocities of -230
to -140 km/s. Contrary to HD 209458b, these high velocities cannot arise from
radiation pressure alone and require an additional acceleration mechanism, such
as interactions with stellar wind protons. The observed absorption can be
explained by an atmospheric escape rate of neutral hydrogen atoms of about 10^9
g/s, a stellar wind with a velocity of 190 km/s and a temperature of ~10^5K.
An X-ray flare from the active star seen with Swift/XRT 8 hours before the
second-epoch observation supports the idea that the observed changes within the
upper atmosphere of the planet can be caused by variations in the stellar wind
properties, or by variations in the stellar energy input to the planetary
escaping gas (or a mix of the two effects). These observations provide the
first indication of interaction between the exoplanet's atmosphere and stellar
variations.Comment: To be published in A&A Letters, June 28, 201
- …