29 research outputs found

    Regional differences in the three-dimensional bone microstructure of the radial head:implications for observed fracture patterns

    Get PDF
    Introduction: A characterization of the internal bone microstructure of the radial head could provide a better understanding of commonly occurring fracture patterns frequently involving the (antero)lateral quadrant, for which a clear explanation is still lacking. The aim of this study is to describe the radial head bone microstructure using micro-computed tomography (micro-CT) and to relate it to gross morphology, function and possible fracture patterns. Materials and methods: Dry cadaveric human radii were scanned by micro-CT (17 μm/pixel, isotropic). The trabecular bone microstructure was quantified on axial image stacks in four quadrants: the anterolateral (AL), posterolateral (PL), posteromedial (PM) and anteromedial (AM) quadrant. Results: The AL and PL quadrants displayed the significantly lowest bone volume fraction and trabecular number (BV/TV range 12.3–25.1%, Tb.N range 0.73–1.16 mm−1) and highest trabecular separation (Tb.Sp range 0.59–0.82 mm), compared to the PM and AM quadrants (BV/TV range 19.9–36.9%, Tb.N range 0.96–1.61 mm−1, Tb.Sp range 0.45–0.74 mm) (p = 0.03). Conclusions: Our microstructural results suggest that the lateral side is the “weaker side”, exhibiting lower bone volume faction, less trabeculae and higher trabecular separation, compared to the medial side. As the forearm is pronated during most falls, the underlying bone microstructure could explain commonly observed fracture patterns of the radial head, particularly more often involving the AL quadrant. If screw fixation in radial head fractures is considered, surgeons should take advantage of the “stronger” bone microstructure of the medial side of the radial head, should the fracture line allow this

    Relationships between in vivo dynamic knee joint loading, static alignment and tibial subchondral bone microarchitecture in end-stage knee osteoarthritis

    Get PDF
    © 2018 Osteoarthritis Research Society International. Published by Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/ This author accepted manuscript is made available following 12 month embargo from date of publication (January 2018) in accordance with the publisher’s archiving policySummary Objective To study, in end-stage knee osteoarthritis (OA) patients, relationships between indices of in vivo dynamic knee joint loads obtained pre-operatively using gait analysis, static knee alignment, and the subchondral trabecular bone (STB) microarchitecture of their excised tibial plateau quantified with 3D micro-CT. Design Twenty-five knee OA patients scheduled for total knee arthroplasty underwent pre-operative gait analysis. Mechanical axis deviation (MAD) was determined radiographically. Following surgery, excised tibial plateaus were micro-CT-scanned and STB microarchitecture analysed in four subregions (anteromedial, posteromedial, anterolateral, posterolateral). Regional differences in STB microarchitecture and relationships between joint loading and microarchitecture were examined. Results STB microarchitecture differed among subregions (P < 0.001), anteromedially exhibiting highest bone volume fraction (BV/TV) and lowest structure model index (SMI). Anteromedial BV/TV and SMI correlated strongest with the peak external rotation moment (ERM; r = −0.74, r = 0.67, P < 0.01), despite ERM being the lowest (by factor of 10) of the moments considered, with majority of ERM measures below accuracy thresholds; medial-to-lateral BV/TV ratios correlated with ERM, MAD, knee adduction moment (KAM) and internal rotation moment (|r|-range: 0.54–0.74). When controlling for walking speed, KAM and MAD, the ERM explained additional 11–30% of the variations in anteromedial BV/TV and medial-to-lateral BV/TV ratio (R2 = 0.59, R2 = 0.69, P < 0.01). Conclusions This preliminary study suggests significant associations between tibial plateau STB microarchitecture and knee joint loading indices in end-stage knee OA patients. Particularly, anteromedial BV/TV correlates strongest with ERM, whereas medial-to-lateral BV/TV ratio correlates strongest with indicators of medial-to-lateral joint loading (MAD, KAM) and rotational moments. However, associations with ERM should be interpreted with caution

    The X-Linked Inhibitor of Apoptosis Protein Inhibitor Embelin Suppresses Inflammation and Bone Erosion in Collagen Antibody Induced Arthritis Mice

    Get PDF
    Copyright © 2015 Anak A. S. S. K. Dharmapatni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Objective. To investigate the effect of Embelin, an inhibitor of X-Linked Inhibitor of Apoptosis Protein (XIAP), on inflammation and bone erosion in a collagen antibody induced arthritis (CAIA) in mice. Methods. Four groups of mice ( per group) were allocated: CAIA untreated mice, CAIA treated with Prednisolone (10 mg/kg/day), CAIA treated with low dose Embelin (30 mg/kg/day), and CAIA treated with high dose Embelin (50 mg/kg/day). Joint inflammation was evaluated using clinical paw score and histological assessments. Bone erosion was assessed using micro-CT, tartrate resistant acid phosphatase (TRAP) staining, and serum carboxy-terminal collagen crosslinks (CTX-1) ELISA. Immunohistochemistry was used to detect XIAP protein. TUNEL was performed to identify apoptotic cells. Results. Low dose, but not high dose Embelin, suppressed inflammation as reflected by lower paw scores () and lower histological scores for inflammation. Low dose Embelin reduced serum CTX-1 () and demonstrated lower histological score and TRAP counting, and slightly higher bone volume as compared to CAIA untreated mice. XIAP expression was not reduced but TUNEL positive cells were more abundant in Embelin treated CAIA mice. Conclusion. Low dose Embelin suppressed inflammation and serum CTX-1 in CAIA mice, indicating a potential use for Embelin to treat pathological bone loss

    Subregional DXA-derived vertebral bone mineral measures are stronger predictors of failure load in specimens with lower areal bone mineral density, compared to those with higher areal bone mineral density

    Get PDF
    Measurement of areal bone mineral density (aBMD) in intravertebral subregions may increase the diagnostic sensitivity of dual-energy X-ray absorptiometry (DXA)-derived parameters for vertebral fragility. This study investigated whether DXA-derived bone parameters in vertebral subregions were better predictors of vertebral bone strength in specimens with low aBMD, compared to those with higher aBMD. Twenty-five lumbar vertebrae (15 embalmed and 10 fresh-frozen) were scanned with posteroanterior- (PA) and lateral-projection DXA, and then mechanically tested in compression to ultimate failure. Whole-vertebral aBMD and bone mineral content (BMC) were measured from the PA- and lateral-projection scans and within 6 intravertebral subregions. Multivariate regression was used to predict ultimate failure load by BMC, adjusted for vertebral size and specimen fixation status across the whole specimen set, and when subgrouped into specimens with low aBMD and high aBMD. Adjusted BMC explained a substantial proportion of variance in ultimate vertebral load, when measured over the whole vertebral area in lateral projection (adjusted R2 0.84) and across the six subregions (ROIs 2–7) (adjusted R2 range 0.58–0.78). The association between adjusted BMC, either measured subregionally or across the whole vertebral area, and vertebral failure load, was increased for the subgroup of specimens with identified ‘low aBMD’, compared to those with ‘high aBMD’, particularly in the anterior subregion where the adjusted R2 differed by 0.44. The relative contribution of BMC measured in vertebral subregions to ultimate failure load is greater among specimens with lower aBMD, compared to those with higher aBMD, particularly in the anterior subregion of the vertebral body

    Imaging of the Microstructural Failure Mechanism in the Human Hip

    No full text
    Imaging the bone microstructure under progressively increasing loads allows for observing the microstructural failure behavior of bone. Here, we describe a protocol for obtaining a sequence of three-dimensional microstructural images of the entire proximal femur under progressively increasing deformation, causing clinically relevant fractures of the femoral neck. The protocol is demonstrated using four femora from female donors aged 66-80 years at the lower end of bone mineral density in the population (T-score range = −2.09 to −4.75). A radio-transparent compressive stage was designed for loading the specimens replicating a one-leg stance, while recording the applied load during micro-computed tomography (micro-CT) imaging. The field of view was 146 mm wide and 132 mm high, and the isotropic pixel size was 0.03 mm. The force increment was based on finite-element predictions of the fracture load. The compressive stage was used to apply the displacement to the specimen and enact the prescribed force increments. Sub-capital fractures due to opening and shear of the femoral neck occurred after four to five load increments. The micro-CT images and the reaction force measurements were processed to study the bone strain and energy absorption capacity. Instability of the cortex appeared at the early loading steps. The subchondral bone in the femoral head displayed large deformations reaching 16% before fracture, and a progressive increase in the support capacity up to fracture. The deformation energy linearly increased with the displacement up to fracture, while the stiffness decreased to near-zero values immediately before fracture. Three-fourths of the fracture energy was taken by the specimen during the final 25% force increment. In conclusion, the protocol developed revealed a remarkable energy absorption capacity, or damage tolerance, and a synergic interaction between the cortical and trabecular bone at an advanced donor age.</p

    Synchrotron-light time-lapsed imaging of human femoral neck fracture

    No full text
    The age-related microstructural deterioration of bone is an important co-factor to millions of fragility fractures occurring worldwide every year [1]. Time-lapsed micro-computed-tomography (micro-CT) with concomitant mechanical testing is increasingly used to study the bone deformation and fracture mechanism. However, technological limitations linked to the size of the human femoral epiphysis (up to 130 mm width, 150 mm length) and the need of a dedicated mechanical stage for loading such a big specimen inside the imaging chamber, have limited previous studies to either micro-CT imaging of the unloaded femoral epiphysis [1] or of small loaded femur cores [2]. We developed a protocol for time-elapsed micro-CT imaging of entire human femoral epiphyses under load at the Australian Synchrotron (AS)

    Development of a surrogate model based on patient weight, bone mass and geometry to predict femoral neck strains and fracture loads

    No full text
    steoporosis and related bone fractures are an increasing global burden in our ageing society. Areal bone mineral density assessed through dual energy X-ray absorptiometry (DEXA), the clinically accepted and most used method, is not sufficient to assess fracture risk individually. Finite element (FE) modelling has shown improvements in prediction of fracture risk, better than aBMD from DEXA, but is not practical for widespread clinical use. The aim of this study was to develop an adaptive neural network (ANN)-based surrogate model to predict femoral neck strains and fracture loads obtained from a previously developed population-based FE model. The surrogate model performance was assessed in simulating two loading conditions: the stance phase of gait and a fall.The surrogate model successfully predicted strains estimated by FE (r2 = 0.90–0.98 for level gait load case, r2 = 0.92–0.96 for the fall load case). Moreover, an ANN model based on three measurements obtainable in clinics (femoral neck length (level gait) or maximum femoral neck diameter (fall), femoral neck bone mass, body weight) was able to give reasonable predictions (r2 = 0.84–0.94) for all of the strain metrics and the estimated femoral neck fracture load. Overall, the surrogate model has potential for clinical applications as they are based on simple measures of geometry and bone mass which can be derived from DEXA images, accurately predicting FE model outcomes, with advantages over FE models as they are quicker and easier to perform
    corecore