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Abstract

Objective: To study, in end-stage knee osteoalki(@A) patients, relationships between indicemof
vivo dynamic knee joint loads obtained pre-operativaing gait analysis, static knee alignment, and
the subchondral trabecular bone (STB) microarchitecof their excised tibial plateau quantified

with 3D micro-CT.

Design: Twenty-five knee OA patients scheduleddtal knee arthroplasty underwent pre-operative
gait analysis. Mechanical axis deviation (MAD) vaetermined radiographically. Following surgery,
excised tibial plateaus were micro-CT-scanned arl iBicroarchitecture analysed in four
subregions (anteromedial, posteromedial, anteralaigosterolateral). Regional differences in STB

microarchitecture and relationships between jaatling and microarchitecture were examined.

Results: STB microarchitecture differed among sgiores (p<0.001), anteromedially exhibiting
highest bone volume fraction (BV/TV) and lowesusture model index (SMI). Anteromedial

BV/TV and SMI correlated strongest with peak exé¢motation moments (ERM; r=-0.74, r=0.67,
p<0.01), despite ERM being the lowest (by factot@f of the moments considered, with majority of
ERM measures below accuracy thresholds; mediaterdl BV/TV ratios correlated with ERM,
MAD, and knee adduction (KAM) and internal rotatimoments (|r|-range: 0.54-0.74). When
controlling for walking speed, KAM and MAD, the ER&4plained additional 11-30% of the

variations in anteromedial BV/TV and medial-to-faeBV/TV ratio (R=0.59, R=0.69, p<0.01).

Conclusions: This preliminary study suggests sigaift associations between tibial plateau STB
microarchitecture and knee joint loading indicesma-stage knee OA patients. Particularly,
anteromedial BV/TV correlates strongest with ERNheneas medial-to-lateral BV/TV ratio
correlates strongest with indicators of medialétetal joint loading (MAD, KAM) and rotational

moments. However, associations with ERM shoulchterpreted with caution.
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1. Introduction

Knee osteoarthritis (OA) is a debilitating diseaffecting all tissues within the joint, includingte.
The subchondral bone is a mechanical shock absgmecting the overlying articular cartilage
from excessive joint loadsThe compromised integrity of subchondral bongkn important role
in the onset and progression of the distase prospective studies, abnormal joint biomectsitiat
is common with knee OX, has been associated with rate of radiographeadis progressiof
while in cross-sectional studies, it has been linkéh variations to joint structures (e.g. present
cartilage defecfsbone marrow lesiofisvariations in subchondral bone dréand cartilage

thicknes$?).

Abnormalin vivo joint loads, indicated by frontal plane loadingioes, such as knee adduction
moment (KAM) measured during gait and static kremeent from radiographs, have been
associated with local variations in proximal tibiane mineral density (BMD) and mineral content
(BMC), measured by dual X-ray absorptiometry (DXA}. DXA, however, is a two-dimensional
technique which has limited spatial resolution aadnot differentiate between cortical and trabecula
bone, or among different subregions within the saoralyle. Furthermore, it cannot quantify bone

microarchitecture, which has been shown to varpiwithe OA proximal tibi&®

To understand the degeneration of subchondral imo®é\,, it is necessary to study its
microarchitecture. However, previous studies examisubchondral bone microarchitecture in
humans were restricted to thin histological sliceexcised bone corés® Nowadays, X-ray micro-
computed tomography (micro-CT) allows three-dimenal (3D) structural characterization of entire
bone segments including the tibial plateau, norirdesively and at high resolutiohi*® Moreover, to

the best of our knowledge, those studies explahedgyone microarchitecture, did not examine gait or
in vivo joint biomechanics data from the same patientguestigate possible relationships between
these measures. Thus, the associations betweendimielgiomechanics (including the full 3D knee
moments, which differ from normal in G4 and tibial subchondral trabecular bone (STB)

microarchitecture in OA, in the same patient, remtaibe investigated. Through a better



96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

understanding of how joint loading is related teodlovariations in subchondral bone micro-

architecture in knee OA, it may be possible todraedescribe the role of both factors in the disease

This study explores, in end-stage OA patients uguieg total knee arthroplasty (TKA), relationships
between indices dh vivo dynamic knee joint loads obtained pre-operativsiyng 3D gait analysis
(full 3D knee moments, tibiofemoral joint reactifumces), static knee alignment (mechanical axis
deviation, medial proximal tibial angle) and regibproximal tibia subchondral bone
microarchitecture of their excised knees quantifiéth 3D micro-CT. The objective was to
determine which biomechanical factors describedyteatest variation in subregional subchondral
trabecular bone microarchitecture and distributibthe bone across the tibia plateau. We
hypothesised that the frontal plane loading ind{séatic alignment, peak adduction moments and
impulse), indicators of medial tibial compartmerading® and medial-to-lateral distribution of

load’®, would be factors most strongly associated withrttedial condyle STB microarchitecture and

medial-to-lateral distribution of bone in the tibpdateau.

2. Methods
2.1 Participants

Twenty-five (n=25) adult patients with end-stage&®©A, scheduled for TKA, were recruited from
the orthopaedics departments at the Royal Adeldaipital, Repatriation General Hospital and
Burnside War Memorial Hospital in Adelaide, Ausiaa(Table 1). In all patients indication for
surgery was painful and symptomatic knee OA, argtisfactory response to non-invasive
treatments. This criteria established our operatidefinition of end-stage knee OA. The
radiographic (Kellgren-Lawrence) grade of the exsadijoints ranged from 2 (mild) to 4 (severe;
Table 2). Patients were excluded from this studghi#y were unable to walk unaided for 10 m; had a
history of inflammatory arthritis; had neurologichsorders that would affect walking; had severe
cardiovascular or pulmonary disease; had isolaté¢ellpfemoral knee OA; or were unable to

understand English. This study received ethicsa@bfrom the Southern Adelaide Clinical and
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Royal Adelaide Hospital Human Research Ethics Cdtess. All patients provided written informed

consent prior to their involvement.

2.2 Gait analysis

Patients underwent pre-operative gait analysisiwithe week prior to surgery. Three successful
walking trials were collected with the patient watk without footwear, at self-selected speed alng
10-m walkway. 3D kinematics and ground reactiorcéaata were collected using 12 VICON MX-
F20 cameras (Vicon Metrics, Oxford, UK) and fourdit-embedded force platforms (2 x 9281B,
Kistler Instrument Corporation, Switzerland; 2 x AMBP400600, Advanced Mechanical
Technology Inc., USA) at 100 and 400 Hz, respeftive set of 40 retro-reflective lower-limb
markers were placed on the subject’s pelvis an@tdimbs. Markers were placed over palpable
anatomical landmarks to define the joints of thedolimbs, and rigid clusters of four non-collinear
markers were attached to the thighs and sariMsrker trajectories and ground reaction forcesewe
low-pass filtered, using a zero-laj drder Butterworth filter with cut-off frequency 6fand 25 Hz,
respectivelf”. The pose of the body segments was reconstrustad global optimisaticti . The
kinematic model (details in Thewlis et®8).consisted of a pelvis, two thighs, two shanks mvalfeet

connected by six joints with 3, 2 and 2 degredsesfdom, respectively.

Walking velocity was calculated from kinematic datae external knee joint moments were
computed using inverse dynamics following a resmerdiewton-Euler methddin Visual3D (V5, C-
Motion Inc., USA) and expressed in the shank coardi system. Moments, normalized to body mass
(Nm/kg), were reported as the mean of the threeemsful trials per participant. Data were time-
normalised to 101 points representing 0 to 100%h@ftance phase. The knee moments included:
peak knee flexion (KFM), terminal stance peak kextension (KEM), peak knee adduction (KAM,
first (KAM ;) and second (KAM) peaks), external (ERM) and internal rotation ([Rkbments (Fig.

1)*®. The KAM impulse, representing the area undestfduction moment curve, was computed

using the trapezoidal method across the entirestphase. The tibiofemoral total joint reactiorcéor



148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

(JRF) was computed using a musculoskeletal modeidan the geometry of Delp efaas
described in detail previouéMsing MATLAB (R2013a, Mathworks, Inc., Natick, MAISA) and

normalized to body weights.

2.3 Clinical and radiographic data (disease severity and joint alignment)

The Western Ontario & McMaster Universities Ostéuitis Index (WOMAC) (5 point Likert-type
format) was completed by each participant durirggltfiomechanics laboratory visit, to assess the
degree of self-reported knee pain and functiomaitditior?®. Mechanical alignment (mechanical axis
deviation (MAD), medial proximal tibial angle (MPJAand OA disease severity (Kellgren-
Lawrence Gradirfg, OARSI Atlas®) of the affected joint, were evaluated from fihbth anterior-
posterior weight-bearing radiographs by an expeddrexaminer (LBS). MAD is defined as the
perpendicular distance (in mm) from the knee jogrttre to the mechanical axis, where the
mechanical axis is the line connecting the centtaefemoral head to the centre of the ankle joint
Valgus alignment was defined as >0mm lateral deviatioaytral alignment between 0-15mm medial
deviation andarus alignment as >15mm medial deviatidn The MPTA is defined as the medial
angle between the anatomical axis of the tibiae(fnroam knee centre to ankle centre) and a line

parallel to the tibial plateau surface.

2.4 Micro-CT imaging and mor phometric analysis

Tibial plateaus were retrieved following TKA andédd in 70% ethanol solution. Specimens were
scanned with a desktop micro-CT system (SkyscaB,18ikyscan-Bruker, Kontich, Belgium) at
17.4pm isotropic pixel size, source voltage 100kaprent 90U A, rotation step 0.4° over 180°
rotation, exposure time 590ms, 4 frames averagiagdeb mm-thick aluminium filter for beam
hardening reduction (further details in Robertalét®. Prior to scanning, specimens were removed

from the ethanol solution and wrapped in cling-filgtans were performed with the tibial plateau
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fixed on a carbon bed, with the medial-lateral afisach specimen aligned with the system’s
rotation axis®. For each specimen, 4997 consecutive cross-sentages were reconstructed
(86.9mm length, slice thickness one pixel (17.4us)hg a filtered back-projection algorithm, each
image 3936x3936 pixels (68.5x68.5mm) in size anéddn 8-bit grayscale format (NRecon
software, v1.6.9.8, Skyscan-Bruker, Kontich, BefgjuCross-section images were then rotated in 3D
and saved with the anatomical superior-inferiosafieach plateau aligned with the z-axis of the

image stack (DataViewer software, v 1.5.1.2, Skys8ruker, Kontich, Belgiunif.

In each tibial plateau image dataset, four cylicelrSTB volumes of interest (VOI) were selected
within the load bearing regions of the tibial coledy each VOI was centred within the anterior or
posterior halves of the medial and lateral condyldsch were defined by elliptical regions (Fig)2a
anteromedial (AM), posteromedial (PM), anteroldté) posterolateral (PL) VOF. The

cylindrical VOIs contained only subchondral trabactone, were of diameter 20mm and minimum
length 3mm (to satisfy the continuum assumptiotratfecular borfé>), maximum 5mm, depending
on the specimen. The superior surface of each Vi3l subjacent to the inferior surface of the
subchondral bone plate, extending distally tow#ndsgrowth plate (Fig. 2b). Each STB VOI was
binarised with uniform thresholdifitf® and the following morphometric parameters werewdated
for each volume (software CT Analyser, v1.14.%:Bone volume fraction (BV/TV, %), ratio of the
voxels segmented as bone to the total number afls@onstituting the examined VQltrabecular
thickness (Tb.Th, mm), average 3D thickness ofrdigeculae within examined V&£ trabecular
separation (Tb.Sp, mm), 3D measure of the meaardistbetween the trabeculae within the YOI
trabecular number (Tb.N, 1/mm), the number of tcakse per unit lengffy structure model index
(SMI, unitless), parameter describing the ratio of rod- to plidtetrabecular structures within

examined VOI (value range: from 0 (ideal plate-ltaucture) to 3 (ideal rod-like structurd)}’

The medial (M) and lateral (L) condyle BV/TV werensputed as the average BV/TV of the anterior
(A) and posterior (P) VOIs within each condyle. BM/TV ratios within each condyle (anterior-to-

posterior, A:P) and between the condyles (mediddtteral, M:L) were also computed.
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2.5 Satistics

A power analysis (G*Power 3 indicated that for a statistical power= 0.8 atgha= 0.05, a
minimum sample size of 17 patients would be necgdeadetecting significant differences (effect
size of 1 standard deviation) among STB subregimakssignificant associations (effect size r=0.6)

between knee loading and STB microarchitecturameaters.

Differences in the five morphometric parameters {B¥, SMI, Th.Th, Tb.N and Tb.Sp) among the
four tibial subregions (AM, PM, AL, PL) were assesddy using five independent repeated measures
ANOVA, followed by paired t-test with Bonferroni mdtment for multiple comparisons. Independent
ANOVAs were conducted, instead of a single MANO\Ae to strong interrelationships among the
morphometric parameters investigated (r>0.8). BohéANOVA, Bonferroni correction for 30 total
comparisons (6 subregional comparisons per paraweds applied at alpha= 0.05 (effective p-
value=0.0017 for significance). STB parameters wested for assumptions of normality and

sphericity, with departures from sphericity coreetusing the Greenhouse-Geisser method

Linear relationships between STB subregional mictogecture parameters, BV/TV ratios, dynamic
joint loads and knee alignment parameters were ahusing Pearson’s correlations with
subsequent Benjamini-Hochberg adjustment (falssodery rate=0.05), to control for multiple
testing®. Then, to control for potentially confounding \abies that influence the medial JRF or the
medial-to-lateral load distribution, multiple line@gression analysis was performed, for predicting
AM BV/TV or M:L BV/TV ratios, respectively. The ERMwvhich was the loading index most
strongly correlated with the dependent variabldgl 8V/TV and M:L BV/TV ratio), was forward
entered into multiple regression models, considerialking speed, KAM and MAD as
covariate§?*** STB microarchitecture and joint loading parameteere tested for assumptions of
normality (Shapiro-Wilks test), homogeneity of \earte (Levene’s test), linearity, multicollinearity

(variance inflation factor) and homoscedasticigafter plot of residuals). The significance levelsw
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set to p<0.05. Statistical analysis was perforngdguSPSS Statistics 22 (IBM Corp., Armonk, NY,

USA).

A secondary analysis (Supplementary Materials) pesormed, subdividing the cohort in two
subgroups: one with neutrally to varus-alignedtmijgonstituting the “neutral-varus” group, MAD

>0 mm) and one with valgus-aligned joints (MAD <én). The neutral-varus subgroup enables
comparison with previous literature, as relatiopstbetween joint loading and proximal tibial BMD
were exclusively explored in medial knee OA pasErt whereas relationships for valgus subgroup,

to the best of our knowledge, are reported foffitisetime.

3. Results

Patient characteristics, radiographic featuresgaiiddata are reported in Table 1, Table 2 andFig.
respectively. Of the 25 patients examined, 15 dgtddbvarus, three neutral and seven valgus joint
alignment (Table 1). For the secondary analysipgfumentary Materials for more details), the
neutral and the varus patients whom all presenifdmedial knee OA were then merged,
constituting the “neutral-varus” subgroup (n=18)arVOls (one PM and one PL VOI from separate

patients) were excluded from analysis, as thesesW@re too thin (VOI height <3 mm).

3.1 Tibial subchondral trabecular bone microarchitecture

In the entire OA cohort, significant differencedNBVA, p<0.001) in bone morphometric parameters
were found among the four anatomical VOlIs (Fig.T3)e AM VOI had the highest BV/TV and Th.N
(up to +75% [45%,104%] (mean difference [95% coarfice interval] and +41% [22%,59%],
respectively) and lowest SMI (up to -69% [-36%,-G@B%ompared with the other regions, with largest
differences to the AL VOI (Fig. 2c¢,d). AM Tb.Th whgher (up to +26% [16%,36%]) and AM

Th.Sp lower (up to -25% [-15%,-35%)]) compared with AL and PL VOIs. STB microarchitecture

did not significantly differ between the AL and ROIs, in any parameter.

10
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3.2 Relationships between knee joint loading and tibial subchondral trabecular bone

microarchitecture

Indices of joint loading were significantly corredd with regional tibial 3D microarchitectural
parameters (Fig. 4). Among these, ERM was moshglyacorrelated with medial STB
microarchitecture, negatively with AM BV/TV (r=-041-0.48,-0.88], Fig. 5a), M BV/TV (r=-0.69 [-
0.40,-0.85]) and positively with the AM SMI (r=0.67.38,0.84]). MAD correlated significantly with
lateral STB microarchitecture, most strongly witi/BV (PL, r=-0.71 [-0.40,-0.87], Fig. 5b; L, r=-
0.71[-0.41,-0.87]; AL, r=-0.68 [-0.36,-0.85]). Raming loading indices were weaker and not
significantly associated with any microarchitectyprarameter, except for KEM which correlated with

AL Tb.Sp and Th.N (r=0.72 [0.45,0.87], and r=-0[8¥.22,-0.78], respectively).

3.3. Relationships between knee joint loading and tibial BV/TV ratios among subregions

Indices of knee joint loading significantly corredd with BV/TV ratios among subregions (Fig. 4).
Medial-to-lateral BV/TV ratios (M:L, AM:PL, PM:AL ad PM:PL ratios) were most strongly
associated, negatively with ERM and positively witAD. The strongest correlations were “M:L
BV/TV vs. ERM” (r=-0.74 [-0.48,-0.88], Fig. 5¢) arf¥:L BV/TV vs. MAD” (r=0.74 [0.45,0.88],

Fig. 5d); for all other ratios, |r|-range: 0.57-10.<0.05 for all). The M:L BV/TV ratio was also
significantly associated with, in order of descagdstrength, the KAV KAM, KAM ,, IRM and

KAM impulse (Jr]-range: 0.54—0.60). No significasisociations were observed between measures of

joint loading and anterior-to-posterior (AM:PM, ARL) BV/TV ratios.

3.4 Sepwise Multiple Linear Regression Analysis

11
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ERM entered all regression models for predictioAlf BV/TV or M:L BV/TV ratio, after

controlling for walking speed, KAMand MAD (Table 3). The ERM explained additionalZ®% of

the variation in AM BV/TV (final model: walking spel, MAD, KAM, ERM, adjusted £0.59,
p=0.001) and additional 11% in M:L BV/TV ratio (ihmodel: MAD, KAM, ERM, adjusted

R?=0.69, p<0.0005), compared to these regression Imat®ut ERM (adjusted £0.27 and

adjusted B=0.53, respectively). One patient, assessed aghmstandardized residuals, leverage and
Cook’s Distance, was considered influential and thvas removed from each regression model.
Multicollinearity was considered a minor problerssgite strong association between KAdhd

MAD (r=-0.83, Supplementary Material), as variaitféation factor was < 4.4 for all modéfs

4, Discussion

This exploratory study performed, on the same pgteecombination of 3D gait analysis and micro-
CT imaging to investigate relationships betweerekjomt loading indices and subregional
measurements of proximal tibial STB microarchiteetm end-stage knee OA. STB microarchitecture
differed significantly among condylar subregiongghvhighest BV/TV and more plate-like structure
anteromedially. The STB microarchitecture in thediakecondyle, particularly in the AM
compartment, was most strongly associated with ERNhg early stance, whereas laterally it was
most strongly associated with MAD. The M:L BV/TVisegional ratios were also significantly and
most strongly associated with ERM and MAD, followsdKAM indices and IRM. ERM explained
additional variation in AM BV/TV and M:L BV/TV rat when controlling for KAM and MAD in
multiple linear regression models. However, onehnapnsider the possibility that the associations
with ERM could be an artefact of the cross-sectishady design, since ERM was an order of
magnitude lower than other moments examined, aatdhle majority of ERM measures were below

the threshold of accuracy.

Frontal plane loading indices were associated thighM:L BV/TV ratio, most strongly with static

alignment (MAD), followed by associations with KAMKAM , and KAM impulse; these findings are

12
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consistent with previous reports on associatiomwédxn knee loads and DXA-measures of proximal
tibia BMD ratios (analogous with the BV/TV ratiosre)*>. The MAD was also the parameter most
strongly correlated with lateral STB microarchiteet, particularly with AL and PL BV/TV, Th.Th
and Th.N. The stronger associations “MAD vs. M:L/BV” compared with “"KAM vs. M:L BV/TV”
are consistent with previous findings using BNMDHowever, M:L BV/TV ratio correlated stronger
with peak KAM indices (discrete measures of loalithgn with the KAM impulse (a cumulative
measure of load during stance), which is diffeterwhat has been found previouglyOverall, all the
associations reported herein between joint loattidiges and measures of bone quantity were
stronger (|r]-range: 0.54-0.74) compared with presly published work in patients with medial knee
OA (Jr]-range: 0.30-0.53)"% Importantly, the present study differs from poais work by employing
micro-CT rather than DXA, permitting examinationtb&é STB microarchitecture in specific
subregions of the proximal tibia, where microaretitiral differences with OA are most evident and

hence could, in part, explain the stronger assoaistf.

Peak rotational moments were strongly associatddsmbregional STB microarchitecture for “ERM
vs. AM (and M) BV/TV” and “ERM vs. AM SMI”, with gositive and negative sign, respectively;
anteromedially being the anatomical location wHgvETV was highest and SMI lowest in the
present OA series. Furthermore, ERM was the dynéoaiting parameter most strongly associated
with M:L BV/TV ratio overall (same strength as th@atic loading index MAD); the internal rotational
moment correlated also significantly (“IRM vs. MBV/TV"), however, weaker. Interestingly, in a
multiple regression model, the ERM explained addai variation in the AM BV/TV and M:L

BV/TV ratio, when controlling for walking speed, & and MAD, parameters that influence tibial
JRF®. In OA patients, gait studies have documented fd{feor non-statistically different ERM,
compared to contrdl§ further, no significant changes in ERM were olsdrin OA following

surgical intervention (high tibial osteotorfi¥/}°. However, its association with variations in kibeme
structure, had not yet been explored. Hence, tirefgiance of rotational moments to overall loading
at the knee joint remains currently uncertain. \Mknawledge the relatively poor measurement

reliability in these transverse plane loading iedidt is unclear, given their low magnitude, wieeth
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the rotational moments observed (Fig. 5a,c) arBimineasurement accuracy thresholds. This
limitation possibly accounting for discrepanciesoam studie€*®>° Further, results on rotational
moments should be considered within this contéxomfirmed, these findings could suggest that the
rotational moments during early stance may be lipefameters for describing variations in the STB
bone across the tibial plateau, beyond frontalitfgaahdices. Further, it supports previous evidence
that this early period of stance, characterizedhanges in joint function in OA (e.g. increased

muscle co-activity, joint stiffness?), is important in disease pathomechanics.

Finally, the JRF was not significantly associatediver with subregional STB microarchitecture, nor
with BV/TV subregional ratios. One reason for thisence of significant associations may be due to
the used musculoskeletal model computing the dvéirdt, rather than medial or lateral condyle-
specific JRF, hence not giving a measure of the ldald distribution. Furthermore, the model
assumes non-pathological muscle activation patténas not accounting for differences in loading

that may be due to variations in muscle activitkiee O&®,

The scientific literature suggests that beside meresity (BV/TV), subchondral bone
microarchitecture (including SMI) varies in humarek OA, depending on stage of the dis¥aée

and joint alignmerif. In early OA (mouse models), subchondral boneiengslecreased BV/TV

values and more rod-like structures compared telimgd has been reported, whereas in late OA (in
mice and in human OA), trabecular bone thickeniitd sclerosis (very high BV/TV values) and

more plate-like structures, particularly in the iaédondyle, has been observed However, no
human gait analysis was performed in these stubiessce, to the best of the authors’ knowledge, this
study is the first to explore associations betwsesk moments and variations in joint bone

microarchitecture in the same patient.

The results presented should be interpreted witi@rimitations of this study. A major limitationas
the small sample size, given the many associaggasined. Benjamini-Hochberg correction was
applied, to account for multiple testing. Given all®w for a false discovery rate of 5% (Type |

error), future studies are required to confirmabeerved relationships in bigger cohorts. Secoue, d
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to the cross-sectional study design, it is alsdaarovhether the joint loads observed in thesespti
just prior to TKA reflect knee loads that also acduring earlier stages of the disease and that may
have influenced the resultant bone microarchitectiirserved within this study. Certainly, walking
speed in our end-stage OA patients, which is knmnaffect the magnitude of peak knee monénts
was slower (almost halved, 0.70 Hshan reported in patients with less severe OA-13 ms

131347 Moreover, we cannot exclude in the present sartipdé other factors, apart from loading,
including age, genetics, or the local biochemicai®nment in the presence of bone sclerosis (Table
2), affect subchondral bone metabofidrilence, we could not determine whether the redeale
relationships between joint loading and STB micchéecture are present in the earlier stages of the
disease, or within non-pathological joints. Micr@-€annot currently be applied vivo on human
knees for characterisation of STB microarchitecttires this study was restricted to patients who
underwent TKA due to knee OA. However, recent megnlution peripheral quantitative CT (HR-
pQCT) imaging systems, permittimgvivo examination of proximal tibial STB microarchitertu

with 61pm voxel siz€, may in future be employed to examine the abokatioaships, using the
image analysis methods described herein, in eaklya@ non-pathological joints. HR-pQCT may
also be useful for examining whether longitudirtzges in STB microarchitecture can be explained
by baseline measures of joint loading. Moreovergigenot study articular cartilage morphology, for
example cartilage thickness, which is importaribad transfer across the tibiofemoral joint. Lastly
variations in radiographic disease severity (noléeévere) and knee joint alignment (varus to valgus
could also be drivers of associations between Joading indices and bone microarchitecture
observed herein; the former suggested by previqusbjished literaturg, the latter (varus to valgus)
suggested by our subgroup analysis (Supplementatgridls), for which we acknowledge the small
sample size. As medial and lateral OA may repredistinct disease phenotypéshe investigation

of each subgroup of appropriate sample size inrdutiwarranted.

The strength of this study is the combination off8@ro-CT and gait analysis, on the same patient.
This permits examination of the STB microarchiteetun specific subregions of the proximal tibial

plateau, where microarchitectural differences vd#h are most evident, combining them withvivo
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measures of joint loading of the same subject. e as the micro-CT examination was performed

on entire tibial plateaus without coring, specimarespreserved intact for further examinatfon

Concluding, although not definitive in light of teenall sample size, this study in end-stage knee OA
patients suggests that dynamic and static inditkse® joint loading are significantly associateithw
regional variations in 3D subchondral trabeculanébmicroarchitecture. These novel findings may
contribute to a better understanding of the distrdm of joint loads upon the tibial plateau arg it
possible links with bone microarchitecture in latage OA. Future work may confirm these in a
bigger cohort and elucidate, if present, causdimks between joint loading and STB
microarchitectural changes, to identify potentiainbechanical factors that may be targets for satgic

or non-invasive therapies.
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Figure 1 Average external knee moments and standard dewigthaded area) over the stance phase
of the gait cycle for all knee OA patients (n =.28ported peak knee moments are highlighted:
KFM: knee flexion moment, KEM: knee extension momé&mRM ;, KAM,: first and second peak

knee adduction moments, ERM: external rotation nmd&M: internal rotation moment.

Figure 2 (a) 3D micro-CT image of an excised tibial plateawura right knee (view from top). The
ellipses defining the medial and lateral tibial dgles are shown (dashed lines), containing the
location of the four subvolumes of interest (VQds, indicated by red circles) in the anterior-medial
(AM), anterior-lateral (AL), posterior-medial (PMnd posterior-lateral (PL) compartmen(s) 2D
coronal micro-CT cross-section image of the tilplalteau with medial and lateral boundaries of the
ellipses indicated by red lines. The location of $ubchondral trabecular AM and AL VOls are
indicated;(c,d) 3D micro-CT images of the cylindrical subchondrabecular bone VOIs examined
(10 mm diameter, 3 mm length);) specimen from the AM subregion showing high BV/awd
plate-like microarchitecture (BV/TV= 42%, SMI= 0;4)l) specimen from the AL subregion showing
low BV/TV and mainly rod-like microarchitecture (BW= 13%, SMI= 2.2).

Figure 3 Univariate scatter plots reporting values of 3bchondral trabecular bone morphometric
parameters in the four subregions of interest withe proximal tibial plateau, for all OA patierts

= 25). Mean and standard deviation (error barscatdd. AM: anterior-medial, AL: anterior-lateral,
PM: posterior-medial, PL: posterior-lateral, BV/TWone volume fraction, SMI: structure model
index, Th.Th: trabecular thickness, Th.N, trabecolamber, Th.Sp: trabecular separation. Significant
differences among the regions are indicated byslife < 0.05, paired t-test with Bonferroni

adjustment).



Figure 4 Entire OA cohort (n = 25): Heatmap of Pearsonisalation coefficients (r-values) for
“knee joint loads vs. subregional subchondral tcalks bone microarchitecture parameters and
subregional BV/TV ratios”. *Significant correlatisr{Benjamini-Hochberg adjusted, false discovery
rate = 0.05) indicated. BV/TV: bone volume fracti®MI: structure model index, Th.Th: trabecular
thickness, Th.Sp: trabecular separation, Th.Neatar number, AM: anterior-medial, AL: anterior-
lateral, PM: posterior-medial, PL: posterior-latekd=M: knee flexion moment, KEM: knee
extension moment, KAM: knee adduction moment, ERKernal rotation moment, IRM: internal
rotation moment, JRF: joint reaction force, MAD:¢hanical axis deviation, MPTA: medial proximal

tibia angle.

Figure 5 Scatter plot with best fit line (solid line) an®% confidence interval (dashed line) for
Pearson’s correlations: (a) “AM BV/TV vs. ERM”, (L BV/TV vs. MAD", (c) “M:L BV/TV ratio
vs. ERM” and (d) “M:L BV/TV ratio vs. MAD”, for allOA patients (n = 25).



Table 1 Summary of physical characteristics and gait patars of

total knee arthroplasty patients (n = 25)

Age (years)
Gender (male:females)
Affected limb (right:left)
Height (m)
Body mass (kg)
BMI (kg/m?)
WOMAC (total)
Pain
Stiffness
Function
Walking Speed (m/s)
Knee moments (Nnvkg)
Knee Flexion Moment, KFM
Knee Extension Moment, KEM
First peak adduction moment, KAM
Second peak adduction moment, KAM
Knee adduction moment impulse
External Rotation Moment, ERM
Internal Rotation Moment, IRM
Joint reaction force (BW)
Satic Alignment
Mechanical Axis Deviation (mm)

Medial Proximal Tibial Angle®]

68 +7
11:14
13:12
1.66 £0.09
91.6+18.0
329+44
56 +13
12+ 2
61
39+12
0.70 +£0.25

0.35+0.23
-0.11+0.29
-0.40 £0.23
-0.39+£0.22
27.0+14.2
0.022 + 0.023
-0.085 £ 0.079
3.02£0.96

9.2+34.8
90.1+2.7

Average + standard deviation. BW, bodyweights



Table 3 Summary of multiple linear regression analysis, for prediction of AM BV/TV and M:L
BV/TV ratio

Dependent Var.  Model Unadj. R Adji. R®* AR?> p-vaue
MAD, KAM; 0.285 0.206 0.049
*
AM BV/TV MAD, KAM1, ERM 0.546 0466 0.261 0.003
WS, MAD, KAM; 0.371 0.266 0.036
WS, MAD, KAM;, ERM 0.668 0.590 0.297* 0.001
M:L BV/TV Ratio MAD, KAM; 0.588 0.529 0.001
MAD, KAM,, ERM 0.738 0.692 0.108* < 0.0005

The external rotation moment (ERM), which was most strongly associated with the dependent
variables, was forward entered into the regression models. Variables that influence the medial -to-
lateral distribution (MAD, KAM,) and/or media condyle forces (WS, MAD, KAM;) were input as
covariates. *significant F-change, indicating ERM significantly improves prediction

BV/TV: bone volume fraction, AM: anterior-medial, M:L: medial-to-lateral ratio, WS: walking speed;
MAD: mechanical axis deviation, KAM: first peak knee adduction moment



Table 2 Summary of knee radiographic features of al end-stage OA patients (n
=25)

Kellgren-Lawrence Grade Grade Number of subjects
2 4
3 7
4 14

Number of subjects

OARSI atlas radiographic Medial Lateral
features Score condyle Condyle
Osteophyte 0 2 3
1 13 14
2 6 8
3 4 0
Joint space narrowing 0 3 14
1 5 6
2 6 3
3 11 2
Bone sclerosis Present 13 6
Absent 12 19

OA: osteoarthritis; OARSI: Osteoarthritis Research Society International.

All 13 patients exhibiting medial condyle bone sclerosis had varus-aligned
joints (MAD >15 mm), whereas for the 6 patients with lateral sclerosis, 5 were
valgus-aligned (MAD <0 mm) and one neutrally-aligned (MAD 0 - 15 mm).*
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