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ABSTRACT 

Primary press-fit fixation of femoral knee prostheses is obtained thanks to the inside 

dimensions of the implant being undersized with respect to the bone cuts created intra-

operatively, dictated by a press-fit specified by the implant design. However, during 

prostheses press-fit implantation, high compressive and shear stresses at the implant-bone 

interface are generated which causes permanent bone damage. The extent of this damage is 

unknown, but it may influence the implant stability and be a contributing factor to aseptic 

loosening, a main cause of revisions for knee arthroplasty. The aim of this ex-vivo study was 

to quantify, using high-resolution peripheral quantitative computed tomography (HR-pQCT) 

imaging and Digital Volume Correlation (DVC), permanent bone deformation due to press-fit 

femoral knee implantation using a commonly used implant. Six human cadaveric distal 

femora were resected and imaged with HR-pQCT (60.7 µm/voxel, isotropic). Femurs were 

fitted with cementless femoral knee implants (Sigma PFC) and rescanned after implant 

removal. For each femur, permanent deformation was examined in the anterior, posterior-

medial and posterior-lateral condyles for volumes of interest (VOIs) of 10 mm depth. The 

bone volume fraction (BV/TV) for the VOIs in pre- and post-implantation images was 

calculated, at increasing depth from the bone surface. DVC was applied on the VOIs pre- and 

post-implantation, to assess trabecular bone displacements and plastically accumulated 

strains. The “BV/TVpost/BV/TVpre ratio vs. depth” showed, consistently among the six 

femurs, three consecutive points of interest at increasing bone depth, indicating: bone 

removal (ratio<100%), compaction (ratio>100%) and no changes (ratio=100%). Accordingly, 

the trabecular bone displacement computed by DVC suggested bone compaction up to 

2.6±0.8 mm in depth, with peak third principal strains of -162,100±55,000 µε (mean absolute 

error: 1,000-2,000 µε, SD: 200-500 µε), well above the yield strain of bone (7,000-10,000 

µε). Combining 3D-imaging, at spatial resolutions obtainable with clinical HR-pQCT, and 
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DVC, determines the extent of plastic deformation and accumulated compressive strains 

occurring within the bone due to femoral press-fit implantation. The methods and data 

presented can be used to compare different implants, implant surface coatings and press-fit 

values. These can also be used to advance and validate computational models by providing 

information about the bone-implant interface obtained experimentally. Future studies using 

these methods can assist in determining the influence of bone damage on implant stability 

and the subsequent osseointegration.   

 

Keywords – Press-fit implantation, uncemented total knee replacement, trabecular bone 

deformation, HR-pQCT, digital volume correlation 

 

1. INTRODUCTION 

The primary objective of press-fit fixation is to provide initial stability, reduce micro-motions 

at the implant-bone interface and promote long term fixation via osseointegration1.  It is 

important that the implant is properly fitted to allow load transfer and implant stability to 

enable osseointegration, with micromotions up to 30 µm being beneficial for bone growth, 

whereas motions over 150 µm prevent effective osseointegration2-4. Primary press-fit fixation 

of femoral knee prostheses is obtained thanks to the inside dimensions of the implant being 

undersized with respect to the bone cuts created intra-operatively, dictated by a press-fit 

specified by the implant design5. However, during the implantation process, high 

compressive and shear stresses are generated within the bone and at the implant-bone surface, 

which might permanently damage the bone6,7. The extent of this damage could influence the 

long-term survival rates in press-fit prostheses8, with complications in total knee arthroplasty 

(revisions) typically involving both the tibial and femoral component (25.6% of revisions)9, 

whereas 9.7% of revisions are of the tibial component only and 5.8% are of the femoral 
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component only9. Previous studies have investigated the bone damage caused during press-fit 

implantation in three dimensions (3D), but were limited to trabecular bone cubes excised 

from the proximal femur6,10. To the best of our knowledge, only one study has examined 

actual damage created during press-fit implantation of knee implants, published by the co-

authors of the present manuscript7. In that study, the interference fit of a press-fit femoral 

knee implant was investigated, where the depth of damage to the outer surface of the bone 

was quantified by comparing the bone surfaces from the pre- and post-implantation images 

obtained using high-resolution peripheral computed tomography (HR-pQCT) and calculating 

the relative (normal) differences7. However, the amount of internal damage and the 

permanent deformations within the bone (beyond its outer surface), which may also affect the 

primary stability of the implant8, are still unknown.   

To study eventual micro-structural damage caused at increasing depths within the bone, high-

resolution 3D imaging of the femoral condyles before and after press-fit implantation is 

necessary. HR-pQCT scanners allow scanning of such big specimens (which, for example, 

can be up to about 80 mm long in medial-lateral direction, 50 mm long in anterior-posterior 

direction and 70 mm long in inferior-superior direction) at an isotropic voxel size of 61 µm, 

which currently is the highest achievable spatial resolution clinically7. By examining the pre- 

and post- implantation cross-section image datasets, it could be possible to quantify the bone 

(in terms of changes of bone volume, for example), that has been permanently displaced (or 

damaged) during implantation and its depth. In addition, if digital volume correlation (DVC) 

is applied to the 3D datasets obtained before and after implantation, it can inform and 

quantify the displacement of trabecular bone and the accumulated apparent strain caused by 

the implantation process. DVC is a 3D image-based technique, which has the ability to 

compute full-field displacements and strains from materials undergoing time-lapsed 

computed tomography. It has been successfully employed to characterise bone mechanics 
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under step-wise loading11,12, to evaluate full-field internal deformations in whole bones13,14, 

cancellous bone15,16, cement-bone interface14,17, the alveolar bone surrounding dental 

implants and glenoid plates18,19. However, to the best of our knowledge, no study has 

quantified the accumulated deformation or strain, in the peri-implant bone after press-fit 

femoral knee implantation using DVC on human knees.  

Therefore, the aim of the present ex-vivo study is to quantify, using HR-pQCT imaging (61 

μm/voxel) combined with Digital Volume Correlation (DVC), volumetric bone damage and 

permanent bone deformation due to press-fit femoral knee implantation in human distal 

femurs. The implant studied was a cementless Sigma® PFC cruciate retaining femoral knee 

implant, which is one of the most commonly used for cementless total knee replacement9,20,21. 

 

 

 

 

2. METHODS 

2.1 Specimens: The HR-pQCT images of the six human cadaveric femora (age 85±3 years, 

fresh-frozen) generated in the previous study7 were used in this study. Briefly, these six 

femora were obtained from the Anatomy Department of the Radboud university medical 

centre and thawed at room temperature. An experienced orthopaedic surgeon performed bone 

cuts following normal surgical procedure using standard intramedullary instrumentation and 

an oscillating saw with a blade thickness of 1.47 mm (DePuy Synthes, Leeds, UK). Two 

holes were drilled for the femoral pegs. A femoral cutting block was fixed with two threaded 

pins to first resect approximately 9 mm of distal femur from the most prominent distal part of 

the condyle (Fig. 1b).  
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2.2 Pre-implantation HR-pQCT scan: The entire resected distal femurs were scanned in air 

with HR-pQCT (XtremeCT II, SCANCO Medical AG, Brüttisellen, Switzerland) at 60.7 µm 

isotropic voxel size, peak voltage 68 kVp, current 1,470 µA and 200 ms integration time. 

Specimen scanning occurred in 7 contiguous stacks of 168 slices each (corresponding to 10.2 

mm length for each stack), leading to a total scanning length of 71.4 mm for each femur.   

2.3 Implant fitting: The bone specimens were then fitted (five size 5 implants, one size 3) 

with a cementless Sigma® PFC cruciate retaining femoral knee implant with porous surface 

coating, Porocoat® (DePuy Synthesis Joint Reconstruction, Leeds, UK) by the same surgeon 

(Fig. 1a). This implant has a nominal interference fit of 0.75 mm at the anterior, posterior and 

distal resected planes of the femur (i.e., a total anterior-posterior interference fit of 1.5 mm). 

This value of 0.75 mm is equal to the average thickness of the porous surface coating.  

2.4 Implant removal: After implantation, the implants were split through the bottom of the 

condyles using an electric diamond-blade and gently removed to avoid additional bone 

damage.  

2.5 Post-implantation HR-pQCT scan: Subsequently, the post-implantation distal femurs 

were rescanned using HR-pQCT, using the same settings as in the pre-implantation HR-

pQCT scan. 

2.6 Cross-section image reconstruction and image registration: Cross-section images (each 

1,508 x 1,008 pixels in size, at 60.7 µm isotropic pixel size, corresponding to 91.5 x 61.2 

mm) of the pre- and post-implantation scans were reconstructed using proprietary software 

(SCANCO v1.2a, SCANCO Medical AG, Brüttisellen, Switzerland) and then converted into 

8-bit gray-scale bitmap files. Rigid 3D image registration of the pre- and post- implantation 

cross-section images was then performed (software DataViewer v1.5.2.4, Skyscan-Bruker, 

Kontich, Belgium)22. This algorithm uses a combination of Powell’s method and the sum of 
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squares difference to find the optimal registration of the target (post-implantation scan) to the 

reference (pre-implantation scan) over three iterations23. Registration was performed to align 

the post- to the pre-implantation HR-pQCT reconstructed datasets, by aligning regions distant 

from the bone-implant interface by a minimum of 4 mm, where no damage was expected to 

have occurred. 

2.7 Volumes of Interest (VOIs): For each specimen, VOIs were selected using CT Analyser 

(Skyscan-Bruker, Kontich, Belgium) in the posterior and anterior condylar regions of the 

distal femur; these were based on visual examination of bone damage evident in the HR-

pQCT images and from the actual interference fit between the implant’s surface and the 

resected femur as previously determined from optical scanning (TRIOS Color-P13, 3Shape, 

Copenhagen, Denmark) on these specimens7. The VOIs were selected from the cross-section 

image datasets in coronal view (Fig. 1 and Fig. 2). To evaluate damage to the posterior 

condyles, two VOIs were selected, to separately examine the posterior-medial and posterior-

lateral condyle (Fig. 1b). Each VOI included a stack of 165 consecutive coronal cross-

sections (rectangular shape, 34x41 mm in size) which went 10 mm in depth, starting from the 

first posterior cross-section image (depth=0 mm) (coronal plane) that was containing the 

entire condyle in the pre-implantation dataset as reference (Fig. 1b and d). Similarly, to 

evaluate damage to the anterior condylar region, a parallelepiped VOI was individually 

rotated in space, to have its major cross-section (rectangular shape, 53x40 mm in size) 

parallel to the resection plane.  The VOI was defined to encompass the area of apparent 

damage for 10 mm of depth (165 cross-sections) in anterior-posterior direction and parallel to 

the resected planes of the condyles, starting from the outermost cross-section (depth=0 mm) 

that contained the contours of the intact condyle in the pre-implantation dataset as reference 

(Fig. 1c and d). 
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2.8 Image segmentation and bone volume quantification: A uniform threshold was applied to 

the image stacks to segment the bone tissue from air/marrow. The threshold level (65) for 

segmentation was defined from the gray-level histograms (256 gray levels) of the 6 

specimens (Fig. 2)24-26. Pixels representing bone tissue (gray-level values between 65 and 

255) were segmented as solid and pixels representing non-bone tissue (gray-level values 

between 0 and 64) as background. The bone volume fraction (BV/TV, %), i.e. the amount of 

pixels classified as bone in the region of interest divided by the total area of the region27, was 

then calculated for the stack of segmented pre- and post-implantation images in each of the 

VOIs defined above (see 2.7). The ratio BV/TVpost / BV/TVpre was then calculated and plotted 

in a graph, cross-section by cross-section, at increasing coronal depth (up to 10 mm) entering 

the bone from its resection surface (depth=0 mm, defined from the pre-implantation stack), in 

posterior-anterior direction for the posterior condyles and in anterior-posterior direction for 

the anterior condylar region (Fig. 3a and b).  

2.9 Statistical analysis:  

Examination of the graphs “BV/TVpost/BV/TVpre ratio vs. depth” revealed, for each of the six 

femurs, three consecutive characteristic points of interest (Fig. 3): they consisted, at 

increasing depth, in a minimum value for BV/TVpost/BV/TVpre ratio (point A), followed by an 

increase up to a maximum peak (point B) and then by a partial decrease with a subsequent 

flattening of the curve (point C). “C” was defined as the point after which two consecutive 

centred 5-point moving averages of the BV/TVpost/BV/TVpre differed by less than 0.15% in 

value. To test the six femurs for differences in BV/TVpost/BV/TVpre ratios and in depths 

among these 3 characteristic points, a Friedman test was used (non-parametric analogue to a 

repeated measures ANOVA), followed by a post-hoc Wilcoxon signed-rank test (non-

parametric analogue to a paired t-test). These non-parametric tests were also used to compare 

the BV/TVpost/BV/TVpre ratios and depths among the VOIs. Statistical significance was 
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defined as p<0.05. Statistical analysis was performed using SPSS Statistics 25 (IBM Corp., 

Armonk, NY). 

2.10 Application of DVC: To quantify trabecular bone displacements and plastically 

accumulated strains at the micro-structural level, DVC direct correlation (DC) (DaVis v8.3.1, 

LaVision, Germany) was then computed on the gray-scale images constituting the VOIs pre- 

and post-implantation defined above (see 2.7). In brief, DVC (DC) relies on zero-mean 

normalised correlation as a discrete function of gray-levels for each individual sub-

volume12,28. For each sub-volume, displacement is represented as a vector and strain is then 

derived from the displacement using a centered finite difference (CFD) scheme29.  

2.11 VOI masking for DVC and DVC computation: To reduce background noise in the gray-

scale VOIs that could produce artifacts in the DVC displacement and strain calculations, the 

VOIs were first masked using software CTAn to contain the bone and marrow of the 

posterior condyle (“shrink-wrap” function) and then masked again in DaVis (algorithmic 

mask), to exclude pixels belonging to background (air), while still considering trabeculae and 

marrow pixels within the condyle. 

DVC computation was set to use 0% overlap and a 3-step multipass of 56 voxels (3.4 mm) 

side, 48 voxels (2.9 mm) side and a final subvolume size of 20 voxels (1.2 mm) side. The use 

of a multipass in DVC direct correlation has been shown to reduce random error for 

displacement in bone specimens28. The computational time was 416 seconds, for a multipass 

sub-volume of 20 voxels side for a 30 x 35 x 10 mm region, using an Intel Core i7-6700 CPU 

with 3.40 GHz quad-core processor and 16 GB RAM. The final sub-volume size of 20 voxels 

side was chosen as an optimal compromise, based on measurement error calculations as 

explained below (see point 2.12).  
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2.12 Evaluation of sub-volume size errors in DVC (‘accuracy’ and ‘precision’): For DVC 

computations, an increase in the sub-volume size leads to a decrease in the displacement and 

strain errors. However, this also decreases (worsens) the spatial resolution of the resultant 

DVC computation, which then might not be able to capture displacements in a too coarse 

(big) sub-volume12,29. To identify the smallest suitable sub-volume size, while still 

maintaining an acceptable level of error, the random errors associated with both displacement 

and strain were computed for decreasing sub-volume sizes of 64, 48, 32 and 20 voxels side 

(3.8, 2.9, 1.9 and 1.2 mm side lengths, respectively). This was computed for six cubical VOIs 

(15 mm side) per three representative specimens, between pre- and post- implantation cross-

sectional datasets, in anatomical locations distant by at least 4 mm from the implantation 

surface, where no damage was expected to have occurred (as also confirmed by the 

“BV/TVpost/BV/TVpre ratio vs. depth analysis”): in lateral-anterior (LA), lateral-posterior 

(LP), lateral-proximal (LPr), medial-anterior (MA), medial-posterior (MP) and medial-

proximal (MPr) location (Fig. 4).  

The mean absolute error (MAER) (eq. 1) and standard deviation error (SDER) (eq. 2)28, 

indicators of ‘accuracy’ and ‘precision’, respectively16, were calculated in the cubical VOIs 

defined above, to assess strain uncertainties under zero-strain conditions. While the 

displacements between pre- and post-implantation in these regions (MAER) are expected to 

be close to zero due to the co-registration, the actual displacements measured by DVC can be 

affected by experimental factors (i.e. specimens were removed from scanner between scans, 

inaccuracies due to HR-pQCT stepper motor precision, image noise, etc) and have to be 

quantified. Consequently, the displacement and strain uncertainties were quantified in terms 

of SDER. 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑁𝑁

 ∑ �1
6
∑ �𝜀𝜀𝑐𝑐,𝑘𝑘�6
𝑐𝑐=1 �𝑁𝑁

𝑘𝑘=1  (equation 1) 
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𝑁𝑁
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6
∑ �𝜀𝜀𝑐𝑐,𝑘𝑘�6
𝑐𝑐=1 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀�

2
𝑁𝑁
𝑘𝑘=1  (equation 2) 

ε = strain, c = independent strain component, k = measurement point, N = number of 
measurement points 

 

 

 

 

3. RESULTS 

Bone volume 

Posterior locations: 

The “BV/TVpost/BV/TVpre ratio vs. depth” graphs (Fig. 3a) and corresponding HR-pQCT 

images showed, consistently among the six femurs, three consecutive regions of interest with 

characteristic points of interest, differing significantly in BV/TVpost/BV/TVpre ratios and 

depth among each other (p= 0.028, Table 1). On average, the first part of the graph showed 

BV/TVpost/BV/TVpre ratio < 100%, with a minimum peak (A, BV/TVpost/BV/TVpre ratio= 

27.9±15.1% posterior-lateral, 28.5±28.3% posterior-medial, mean±SD) which occurred at 

0.1±0.1 mm depth posterior-lateral and 0.0±0.0 mm depth posterior-medial. This was 

followed by an increase up to a maximum value > 100% suggesting bone compaction, with a 

maximum peak (B, BV/TVpost/BV/TVpre ratio= 140.1±33.3% posterior-lateral, 150.6±39.9% 

posterior-medial) at 1.0±0.6 mm depth posterior-lateral and 0.7±0.2 mm depth posterior-

medial. Then there was a partial decrease with subsequent flattening of the curve at values 

approaching 100%, suggesting no changes (correspondence) between pre- and post-

implantation (C, BV/TVpost/BV/TVpre ratio= 98.1±.5% posterior-lateral, 98.0±0.5% posterior-

medial) at 2.3±0.5 mm depth posterior-lateral and 1.7±0.3 mm depth posterior-medial. 
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Anterior locations:  

Also the “BV/TVpost/BV/TVpre ratio vs. depth” graphs (Fig. 3b) for the anterior regions 

showed three consecutive regions of interest that differed in both BV/TVpost/BV/TVpre ratio 

and depth (p=0.028, table 1). First, a minimum peak (A, BV/TVpost/BV/TVpre ratio= 

3.9±4.2%) occurred at 0.0±0.1 mm depth; then, at increasing depth, the BV/TVpost/BV/TVpre 

ratio increased to a maximum peak above 100% (B, BV/TVpost/BV/TVpre ratio= 

127.1±12.1%) occurring at 0.8±0.1 mm depth. BV/TVpost/BV/TVpre ratios then reached a 

plateau at increasing depth, suggesting correspondence (C, BV/TVpost/BV/TVpre ratio= 

101.1±1.6%) at 2.1±0.4mm depth.  

When comparing the BV/TVpost/BV/TVpre ratio among the posterior-medial, posterior-lateral 

and anterior VOIs (Table 1), the anterior VOI showed statistically significant lower values 

compared to the posterior-medial VOI (p= 0.043) and to the posterior-lateral VOI (p= 0.028) 

at point A. The anterior VOI also showed slightly higher values at point C compared to the 

posterior-medial and posterior-lateral VOIs (p= 0.028). No significant differences in depth 

among the VOIs were found for the points A, B, C. 

DVC results 

Posterior locations: 

The displacement of trabecular bone computed by DVC suggested that bone compaction 

occurred in depths up to 2.6±0.8 mm posterior-laterally and 2.3±0.7 mm posterior-medially 

(Fig. 5b, Table 2), with peak third principal strains of -162,100±55,000 µε posterior-laterally 

and -138,900±12,200 µε posterior-medially (MAER 1,000-2,000 µε, SDER 200-500 µε) (Fig 

5c), the negative sign being consistent with mechanical compression. High localised 

compressive strains were apparent at the surface of the posterior condyles (-80,000 µε to -
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100,000 µε) and were completely confined within the first 2.6 mm of posterior-anterior 

depth.  

Anterior locations: 

In the anterior regions, DVC suggested compaction of trabecular bone occurred up to 2.1±0.3 

mm in depth (Fig. 5b, table 2), with peak third principal strains of -167,900±38,600 µε 

(MAER 1,000-2,000 µε, SDER 200-500 µε) (Fig. 5d). High localised compressive strains 

were apparent at the surface (-60,000 to -90,000 µε), dissipating with increasing anterior-

posterior depth and were completely confined within the first 2.1 mm depth. 

DVC errors at varying sub-volume size (accuracy, precision)  

The strain error decreased non-linearly when the sub-volume size was increased (Fig. S-1). 

Zero-strain testing indicated that a sub-volume of 20 voxels side (1.2 mm) had a strain 

MAER 1,000-2,000 µε and SDER 200-500 µε, with a SDER for displacement for each region 

below 0.08 pixels (4.92 µm). As permanent deformation is being investigated in this study 

and the yield strain of bone is 7,000 to 10,000 µε30,31, this level of precision error (2 – 7%) is 

still deemed acceptable, as it is less than 10% of the nominal strain11,12,16. This sub-volume 

size is also small enough to capture the bone displacements as suggested by the BV/TV 

changes in the curve, which appear occurring at distance intervals less than 3 mm (Fig. 3a). 

Therefore, the sub-volume of 20 voxels side was chosen for the DVC analysis in this 

manuscript (see point 2.11 in Methods). 
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4. DISCUSSION 

This study investigated the permanent bone damage that occurs due to press-fit femoral knee 

implantation in 3D, quantifying bone micro-architectural damage through the use of HR-

pQCT quantitative image analysis and DVC techniques. 

The BV/TVpost/BV/TVpre ratio for the investigated VOIs (posterior-medial, posterior-lateral 

condyles and anterior region) indicated on average an apparent permanent bone damage up to 

2.3 mm in depth, with three characteristic regions within this depth (Fig. 3). Initially, the 

BV/TVpost/BV/TVpre ratio is less than 100% indicating bone removal (A) in the post-

implantation scan. The BV/TVpost/BV/TVpre ratio then rises to a peak above 100% (B) at 

increasing depth, indicating the compaction of trabecular bone. Finally, the 

BV/TVpost/BV/TVpre ratio levels out to approximately 100% indicating no changes 

(correspondence) between pre- and post-implantation scans where no further damage occurs. 

These findings are in line 1) with the DVC results, which suggest compaction of bone during 

implantation at the corresponding depths and 2) with the observed damage visible in the co-

registered HR-pQCT coronal cross-section images in the pre- and post- implantation datasets 

(Fig. 3c, d).  

A previous study, using optical scanning7 on the same femurs and press-fit implant, reported 

bone damage to the outer surface in terms of distance between the pre- and post-implantation 

surfaces. Briefly, surface meshes of the pre- and post-implantation femurs from the HR-

pQCT scans were co-registered and average posterior-anterior distances between pre- and 

post-implantation surface measured, at the posterior and anterior condylar regions. The 

recorded distance between pre- and post-implantation in the posterior condyles and anterior 

regions ranged up to 1.5 mm. The actual interference fit measured in that study was 1.48 ± 

0.27 mm (mean ± SD), with variations among the implant-bone contact areas which may be 
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attributed to cutting error and the placement of the implant7. Interestingly, those reported 

depths are lower than the BV/TVpost/BV/TVpre posterior-anterior depth of trabecular bone 

damage calculated in this study by HR-pQCT (up to 2.3 mm) on the same specimens. 

Therefore, the present results indicate that bone is actually permanently damaged also 

internally, in depth, beyond its interface with the implant. However, from a clinical 

perspective, it is unclear whether this damage impedes, or assists, in initial primary stability 

of the implant and resultant osseointegration into the porous surface of the implant coating32-

35. 

Statistical differences in BV/TVpost/BV/TVpre ratio between the posterior and anterior VOIs 

were observed at points A (peak bone removal) and C (unchanged). At point A, this 

difference can be attributed to differences in the contact area between the implant and the 

bone, as follows. As displayed in the photograph of a resected distal femur with press-fit 

femoral knee component, in the posterior condyles the implant does not completely cover the 

bone surface in the proximal aspect (Fig. 6a, circled in red color). During the implant fitting 

process (impaction), the uncovered part in the posterior condyle is not pushed in like the rest 

of the condyle, which creates an external “rim” of bone, visible in the HR-pQCT 3D 

rendering of the specimen post-implantation (Figure 6b, red arrows). This bone rim in the 

posterior condyles VOI leaves more bone in the post-implantation cross-section images near 

to the surface (rim visible also in Figure 3c and 3d, bone in white color), compared to the 

anterior VOI. Consequently, this led to a higher BV/TVpost/BV/TVpre ratio (24% actual 

difference, Table 1) in the posterior regions than in the anterior region at point A. Whereas at 

point C, the small difference in the BV/TVpost/BV/TVpre ratio between posterior and anterior 

VOIs (3% difference) is likely due to re-scanning/co-registration artifacts as explained below. 

We determined the standard deviation error (SDER) of the BV/TVpost/BV/TVpre calculations 

of the images after co-registration, by calculating the BV/TVpost/BV/TVpre in the same cubes 
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used for the error analysis in strain, between the pre- and post- implantation cross-sectional 

datasets. This revealed a SDER of 2.22% in BV/TVpost/BV/TVpre ratio. As the difference in 

the BV/TVpost/BV/TVpre ratio at point C between the posterior and anterior VOIs (3% 

difference) is of similar magnitude of the SDER in repeated scans, we conclude that this is 

likely due to a scanning/co-registration artifact. 

The third principal strains measured by DVC in posterior condyles were consistent with 

mechanical compression. The strain MAER and SDER were relatively high compared to 

errors in DVC analysis of trabecular bone previously reported in the literature (i.e. MAER of 

1,000-2,000 µε, SDER 200-500 µε in this study, vs. MAER of about 500 µε and SDER of 

150-200 µε reported for DVC analysis on human vertebral bodies using a sub-volume of 40 

voxels side)16. However, the SDER of the smaller sub-volume size used in this study, 20 

voxels side (1.2 mm), was deemed suitable to investigate post-yield strain, being less than 

10% of the yield strength of bone12. The resultant strains measured here were well above the 

yield strength of bone (7,000-10,000 µε30,31) indicating that permanent bone deformation 

occurred, in line with the changes observed in BV/TVpost/BV/TVpre ratios for the posterior 

and anterior condyles. Furthermore, while zero-load testing in this study of larger sub-volume 

sizes e.g. 48 voxels (2.9 mm) side had a lower strain of 300-800 µε and SDER between 100-

400 µε (Fig S-1), that size of sub-volume (2.9 mm side) would have been too large (not 

sensitive enough) to capture the bone displacements by the BV/TV changes in the curve (Fig. 

3a). 

This study measured the permanent bone deformations for one of the most commonly used 

implant types for cementless total knee replacement (cruciate retaining cementless Sigma® 

PFC, DePuy Synthes Joint Reconstruction, Leeds, UK)9,20,21, having a 10-year survival rate of 

94.7%, similar to that of other commonly used cementless knee implants9. Hence, it would be 
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of interest to compare the present findings against other implants (for example, with different 

surface coatings, press-fit values, shape) using the image analysis protocol presented. The 

methods and data presented can also be used to advance and validate computational models 

by providing information about the bone-implant interface obtained experimentally. Future 

studies using these methods can assist in determining the influence of bone damage on 

implant stability and the subsequent osseointegration, advancing implant design.   

Previous studies investigated the influence of bone damage on implant stability using pull-out 

force as a surrogate for primary stability in press-fit implantation on excised trabecular bone 

cubes of medium-density from human femoral heads6,10. Their reported findings suggest that 

the amount of bone abrasion and compaction varies based on surface coating of the implant 

and the type of implantation (e.g. radial vs. axial implantation). It has also been argued that 

the compaction of trabecular bone may assist in primary fixation of the implant as researched 

in canine models32,33. Furthermore, the trabecular bone damage may even be advantageous, to 

an extent, possibly stimulating bone ingrowth34,35. However, to evaluate osseointegration 

clinically in femoral knee implants, a longitudinal study would be required, with patients 

scanned at various time points after implant surgery. In theory this may be possible with a 

HR-pQCT system similar to that used in this study, as it has already been used to scan human 

knees in vivo36 forging a path to potentially monitor osseointegration after implantation in 

vivo; however, metal artifacts in the cross-section images, due to the presence of the 

implanted prosthesis, might still be a strong restraining factor. 

In this study, the HR-pQCT scans were performed before implantation and after implant 

removal, with the femurs being repositioned inside the scanner between the scans. As such, 

the DVC tracking in regions where notable deformation of trabeculae would have occurred 

was not ideal, as it was not progressive and physically these regions were located at the outer 
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compacted surface; this is also evident by the lower correlation coefficients in these areas 

compared to the remainder of the specimen (Fig. 5d). However, the correlation coefficients 

were still within 0.5-0.75 in the deformed regions and the measured displacements 

corresponded to the observed damage within the same plane (Fig. 5d); the correlation 

coefficients in these regions compare also favourably with those of previous studies 

examining compacted bone in incremental axial compression tests15.   

This study has some limitations.  Firstly, ideally, strain uncertainties would have been 

quantified from repeated scans of the bone specimens on which no load at all had been 

applied, in the same VOIs at the bone surface (posterior-medial, posterior-lateral and anterior 

regions) where bone damage was then investigated in this study. However, these repeated 

scans were not available and therefore, strain uncertainties were quantified in assumed zero-

strain conditions from pre- and post-implantation scans; the strain uncertainties were assessed 

in 6 separate regions, away from the surfaces of impaction by at least 4 mm distance, where 

no damage was expected to have occurred (based on the “BV/TVpost/BV/TVpre ratio vs. 

depth” graphs). This possibly produced lower strain uncertainties compared to VOIs at the 

surface, as it did not take into account potential edge artifacts. Additionally, as the implant 

was removed prior to the post-implantation HR-pQCT scan, despite careful sectioning, this 

may have caused additional bone damage; to minimise this, the implants were split through 

the bottom of the condyles and gently removed. However, a few small fragments of bone 

were observed embedded in the porous surface of the implant after removal. This may have 

impacted the tracking abilities of the DVC algorithm, with reduced correlation coefficients 

near the implantation surface; however, these were still acceptable (between 0.5 – 0.75, as 

mentioned above). Secondly, a limited sample size was used in this study (6 femurs). To 

account for this, non-parametric statistical tests (Friedman test, followed by post-hoc 

Wilcoxon signed rank test) were used for the statistical comparisons, instead of parametric 



 

19 
 

tests. Nonetheless, statistically significant differences were found in BV/TVpost/BV/TVpre and 

depth among the 3 points of interest for the 6 specimens. Thirdly, the resection and 

subsequent implantation of the prosthesis was performed by only one orthopaedic surgeon. 

Whereas this might have reduced surgical variability, it might have introduced a systematic 

bias, with surgical technique possibly having an effect on the trabecular bone damage 

generated due to cutting errors and implant fitting affecting the interference fit of the 

implant7,37. Femoral resections were, however, performed according to normal surgical 

procedure by an experienced surgeon using standard intra-medullar instrumentation. 

Fourthly, the spatial resolution of the 3D reconstructed images from HR-pQCT was 60.7µm 

isotropic voxel size. This is a relatively low spatial resolution compared to other studies 

computing DVC on trabecular bone12. This may have resulted in some errors in resolving thin 

trabeculae (e.g. due to partial volume effects)12,27,38. However, this is currently the highest 

isotropic spatial resolution for a pre-clinical CT scanner that can be used on humans in an in 

vivo setting. 

It should also be noted that when scanning the specimens with the HR-pQCT (XtremeCT II), 

scanning occurred in 7 batches of 168 slices (10.2 mm). This caused small discontinuities 

(“stitching artifacts”) in the reconstructed scans at these intervals, noticeable to a greater 

degree in some specimens (2 out of 6). These discontinuities have previously been reported 

using the same scanner36. To minimise the effect of these stitching artifacts in the more 

affected specimens, 3D registration was focused within the same batch where damaged 

occurred, but still distal from the bone-implant interface. 
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5. CONCLUSIONS 

High-resolution 3D imaging combined with digital volume correlation (DVC) enabled us to 

detect, visualize, classify and volumetrically quantify permanent bone damage occurring due 

to the press-fit implantation process. The apparent damage occurs up to 2.3 mm in depth, first 

with bone removal, followed by compaction (densification) and then by no changes 

(correspondence). This was consistent with DVC findings, where high localised accumulated 

compressive strains beyond the yield strain of bone were apparent at the surface of the 

condyles (-80,000 µε to -100,000 µε) within the first 2.6 mm and decreased rapidly with 

increasing posterior-anterior depth. The combination of high-resolution 3D imaging and 

DVC provides important insight into the extent of plastic deformation of bone occurring after 

femoral press-fit implantation. This data and the methods described can be used to inform 

surgeons and manufacturers, to compare bone response to different implant surface coating or 

press-fit values, advance computational models and implant development in future.  
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FIGURE 1 

 

 

Figure 1: (a) Photograph (lateral view) of a resected distal femur with press-fit femoral knee 

component; (b) HR-pQCT 3D rendering of the resected femoral condyles in posterior, (c) 

anterior and (d) lateral view, with volumes of interest (VOIs) used for BV/TV and DVC 

analysis highlighted in blue color.  
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FIGURE 2 

 

Figure 2: a) HR-pQCT cross-section images of a resected distal femur pre-implantation, at 

60.7 µm isotropic pixel size (bone in bright gray color, marrow in dark gray). b) Example of a 

gray-level histogram (256 gray levels) of a transaxial cross-section image. The threshold level 

used to segment bone from air/marrow is indicated by the dashed line (value = 65). 

A: anterior, P: posterior, M: medial, L: lateral anatomical location. 
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FIGURE 3 

 

Figure 3: Left, (a) and (b), graphs “BV/TVpost / BV/TVpre ratio vs. coronal depth”; right, 3D 

HR-pQCT images, (c) posterior and (d) anterior views of femur in yellow color and 

damaged/removed bone in red color, with examples of HR-pQCT coronal cross-section 

images for pre- and post-implantation (bone in white color), at increasing coronal depth from 

the bone surface, showing characteristic points: A peak bone removal, B peak compaction, C 

unchanged 
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FIGURE 4 

 

Figure 4: (a) Volumes of interest (cubes of 15 mm side length) used for the evaluation of 

strain uncertainties (MAER and SDER) in “zero-strain” conditions, away from the bone-

implant interface by a minimum of 4 mm distance:  lateral-anterior (LA), lateral-posterior 

(LP), lateral-proximal (LPr), medial-anterior (MA), medial-posterior (MP) and medial-

proximal (MPr) location. (b) Example of strain uncertainties computed by DVC for the 

principal strains for a sub-volume of 20 voxels side (1.2 mm side length) (i) εxx, (ii) εyy and 

(iii) εzz, under “zero-load” conditions in the LPr cube. 
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FIGURE 5 

 

Figure 5: Posterior condyles (top half of figure) and anterior region (bottom half of figure) of 

the distal femur; (a) HR-pQCT 3D rendering, with lateral 3D views displayed underneath 

(examined condyle/region circled), showing: post-implantation bone in yellow color in slight 
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transparency (20%), with “removed” bone in red color as a solid (i.e. bone present in pre- but 

not in post-implantation scans); next to it, the same condyle/region with pre-implantation bone 

in blue color in slight transparency and “added” bone in solid green color (i.e. bone present in 

post- but not in pre-implantation scans) (b) DVC-computed displacement on the same condyle 

with color scale indicating displacements in µm. White arrows in the displacement map 

represent the displacement vector computed by DVC, (c) DVC-computed third principal strain, 

indicating compressive strains up to approximately 2 mm depth and (d) DVC correlation map 

with color scale indicating correlation coefficients. 
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FIGURE 6 

 

 

Figure 6: (a) Photograph (lateral view) of a resected distal femur with implanted press-fit 

femoral knee component; circled in red color: part of bone not covered by the implant in the 

posterior condyle. (b) During the implant fitting process (impaction), the uncovered part in the 

posterior condyle is not pushed in like the rest of the condyle, which creates an external “rim” 

of bone, visible in the HR-pQCT 3D rendering of the specimen post-implantation (Figure 6b, 

red arrows). 
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SUPPLEMENTARY FIGURE 1 

 

Supplementary Figure 1: (a) Average mean absolute error (MAER) and (b) standard 

deviation error (SDER) computed for 3 representative specimens by performing DVC with 

sub-volume sizes of 64, 48, 32 and 20 voxels side (3.8, 2.9, 1.9 and 1.2 mm side lengths 

respectively) on 6 cubical VOIs (15 mm side), in “zero-strain” conditions, distal from the bone-

implant interface by a minimum of 4 mm distance: lateral-anterior (LA), lateral-posterior (LP), 

lateral-proximal (LPr), medial-anterior (MA), medial-posterior (MP) and medial-proximal 

(MPr) locations. For anatomical locations see Figure 4. 
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Table 1  

“BV/TVpost/BV/TVpre ratio (%) vs. coronal depth (mm)”, summary: Average values ± standard 

deviation (n=6 femurs) of BV/TVpost/BV/TVpre ratio (%) and coronal depth from the bone 

surface at the characteristic points A, B and C identified in the corresponding graphs (figure 

3), for posterior-medial, posterior-lateral and anterior VOIs. 

 

*: Significant differences between points A, B and C within the specified VOI (Friedman test, 

followed by a post-hoc Wilcoxon signed rank test, p<0.05).  

#: Significant difference between posterior-lateral and anterior VOIs at a given characteristic 

point (Friedman test, followed by a post-hoc Wilcoxon signed rank test, p<0.05). 

$: Significant difference between posterior-medial and anterior VOIs at a given characteristic 

point (Friedman test, followed by a post-hoc Wilcoxon signed rank test, p<0.05). 

 

 

  

 Characteristic points: 
 A B C 
Posterior-lateral VOI    
BV/TVpost/BV/TVpre ratio (%)    27.9 ± 15.1 *, # 140.1 ± 33.3 * 98.1 ± 3.5 *, # 

Depth (mm) 
 

     0.1 ± 0.1*      1.0 ± 0.6 * 2.3 ± 0.5 * 
Posterior-medial VOI 
BV/TVpost/BV/TVpre ratio (%)  28.5 ± 28.3 *, $ 150.6 ± 39.9 * 98.0 ± 0.5 *, $ 

Depth (mm) 
 

    0.0 ± 0.0*  0.7 ± 0.2* 1.7 ± 0.3 * 
Anterior VOI 
BV/TVpost/BV/TVpre ratio (%)   3.9 ± 4.2 *, #, $ 127.1 ± 12.1 * 101.1 ± 1.6 *, #, $ 

Depth (mm)     0.0 ± 0.1*   0.8 ± 0.1 *  2.1 ± 0.4 * 
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Table 2 

DVC results summary: Average values ± standard deviation (n=6 femurs) of the peak third 

principal strains and of the average strain computed by DVC within the first few mm of depth 

from the bone surface, for posterior-medial, posterior-lateral and anterior VOIs.  

 

 

 

The “depth” here is defined as the first coronal depth beyond which the average computed 

displacement dropped to values below a threshold of 0.4 pixels (=0.02 mm). This threshold 

value corresponds to the “zero-strain conditions” (see point 2.12 Methods) displacement 

accuracy (MAER) plus standard deviation (SDER) computed by DVC, over three 

representative specimens (Fig. S-1).  

 
 

Figure Captions: 

 

Figure 1: (a) Photograph (lateral view) of a resected distal femur with press-fit femoral knee 

component; (b) HR-pQCT 3D rendering of the resected femoral condyles in posterior, (c) 

anterior and (d) lateral view, with volumes of interest (VOIs) used for BV/TV and DVC 

analysis highlighted in blue color.  

 

Figure 2: a) HR-pQCT cross-section images of a resected distal femur pre-implantation, at 

60.7 µm isotropic pixel size (bone in bright gray color, marrow in dark gray). b) Example of a 

gray-level histogram (256 gray levels) of a transaxial cross-section image. The threshold level 

used to segment bone from air/marrow is indicated by the dashed line (value = 65). 

 Depth  
(mm) 

Peak third principal 
strains within depth 

(µε) 

Average strain 
within depth  

(µε) 
Posterior-lateral VOI 2.6 ± 0.8 -162,100 ± 55,000 -39,300 ± 22,400 
Posterior-medial VOI 2.3 ± 0.7 -138,900 ± 12,200 -41,300 ± 24,400 

Anterior VOI 2.1 ± 0.3 -167,900 ± 38,600 -25,300 ± 18,800 
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A: anterior, P: posterior, M: medial, L: lateral anatomical location. 

 

Figure 3: Left, (a) and (b), graphs “BV/TVpost / BV/TVpre ratio vs. coronal depth”; right, 3D 

HR-pQCT images, (c) posterior and (d) anterior views of femur in yellow color and 

damaged/removed bone in red color, with examples of HR-pQCT coronal cross-section 

images for pre- and post-implantation (bone in white color), at increasing coronal depth from 

the bone surface, showing characteristic points: A peak bone removal, B peak compaction, C 

unchanged 

 

Figure 4: (a) Volumes of interest (cubes of 15 mm side length) used for the evaluation of 

strain uncertainties (MAER and SDER) in “zero-strain” conditions, away from the bone-

implant interface by a minimum of 4 mm distance:  lateral-anterior (LA), lateral-posterior 

(LP), lateral-proximal (LPr), medial-anterior (MA), medial-posterior (MP) and medial-

proximal (MPr) location. (b) Example of strain uncertainties computed by DVC for the 

principal strains for a sub-volume of 20 voxels side (1.2 mm side length) (i) εxx, (ii) εyy and 

(iii) εzz, under “zero-load” conditions in the LPr cube. 

 

Figure 5: Posterior condyles (top half of figure) and anterior region (bottom half of figure) of 

the distal femur; (a) HR-pQCT 3D rendering, with lateral 3D views displayed underneath 

(examined condyle/region circled), showing: post-implantation bone in yellow color in slight 

transparency (20%), with “removed” bone in red color as a solid (i.e. bone present in pre- but 

not in post-implantation scans); next to it, the same condyle/region with pre-implantation bone 

in blue color in slight transparency and “added” bone in solid green color (i.e. bone present in 

post- but not in pre-implantation scans) (b) DVC-computed displacement on the same condyle 

with color scale indicating displacements in µm. White arrows in the displacement map 
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represent the displacement vector computed by DVC, (c) DVC-computed third principal strain, 

indicating compressive strains up to approximately 2 mm depth and (d) DVC correlation map 

with color scale indicating correlation coefficients. 

 

Figure 6: (a) Photograph (lateral view) of a resected distal femur with implanted press-fit 

femoral knee component; circled in red color: part of bone not covered by the implant in the 

posterior condyle. (b) During the implant fitting process (impaction), the uncovered part in the 

posterior condyle is not pushed in like the rest of the condyle, which creates an external “rim” 

of bone, visible in the HR-pQCT 3D rendering of the specimen post-implantation (Figure 6b, 

red arrows). 

 

Supplementary Figure 1: (a) Average mean absolute error (MAER) and (b) standard 

deviation error (SDER) computed for 3 representative specimens by performing DVC with 

sub-volume sizes of 64, 48, 32 and 20 voxels side (3.8, 2.9, 1.9 and 1.2 mm side lengths 

respectively) on 6 cubical VOIs (15 mm side), in “zero-strain” conditions, distal from the bone-

implant interface by a minimum of 4 mm distance: lateral-anterior (LA), lateral-posterior (LP), 

lateral-proximal (LPr), medial-anterior (MA), medial-posterior (MP) and medial-proximal 

(MPr) locations. For anatomical locations see Figure 4. 

 


