86 research outputs found

    Microbially assisted recording of the Earth's magnetic field in sediment

    Get PDF
    Sediments continuously record variations of the Earth's magnetic field and thus provide an important archive for studying the geodynamo. The recording process occurs as magnetic grains partially align with the geomagnetic field during and after sediment deposition, generating a depositional remanent magnetization (DRM) or post-DRM (PDRM). (P) DRM acquisition mechanisms have been investigated for over 50 years, yet many aspects remain unclear. A key issue concerns the controversial role of bioturbation, that is, the mechanical disturbance of sediment by benthic organisms, during PDRM acquisition. A recent theory on bioturbation-driven PDRM appears to solve many inconsistencies between laboratory experiments and palaeomagnetic records, yet it lacks experimental proof. Here we fill this gap by documenting the important role of bioturbation-induced rotational diffusion for (P) DRM acquisition, including the control exerted on the recorded inclination and intensity, as determined by the equilibrium between aligning and perturbing torques acting on magnetic particles

    Microbially assisted recording of the Earth's magnetic field in sediment

    Get PDF
    Sediments continuously record variations of the Earth's magnetic field and thus provide an important archive for studying the geodynamo. The recording process occurs as magnetic grains partially align with the geomagnetic field during and after sediment deposition, generating a depositional remanent magnetization (DRM) or post-DRM (PDRM). (P) DRM acquisition mechanisms have been investigated for over 50 years, yet many aspects remain unclear. A key issue concerns the controversial role of bioturbation, that is, the mechanical disturbance of sediment by benthic organisms, during PDRM acquisition. A recent theory on bioturbation-driven PDRM appears to solve many inconsistencies between laboratory experiments and palaeomagnetic records, yet it lacks experimental proof. Here we fill this gap by documenting the important role of bioturbation-induced rotational diffusion for (P) DRM acquisition, including the control exerted on the recorded inclination and intensity, as determined by the equilibrium between aligning and perturbing torques acting on magnetic particles

    Magneto-Chemotaxis in Sediment: First Insights

    Get PDF
    Magnetotactic bacteria (MTB) use passive alignment with the Earth magnetic field as a mean to increase their navigation efficiency in horizontally stratified environments through what is known as magneto-aerotaxis (M-A). Current M-A models have been derived from MTB observations in aqueous environments, where a >80% alignment with inclined magnetic field lines produces a one-dimensional search for optimal living conditions. However, the mean magnetic alignment of MTB in their most widespread living environment, i.e. sediment, has been recently found to be <1%, greatly reducing or even eliminating the magnetotactic advantage deduced for the case of MTB in water. In order to understand the role of magnetotaxis for MTB populations living in sediment, we performed first M-A observations with lake sediment microcosms. Microcosm experiments were based on different combinations of (1) MTB position with respect to their preferred living depth (i.e. above, at, and below),and (2) magnetic field configurations (i.e. correctly and incorrectly polarized vertical fields, horizontal fields, and zero fields). Results suggest that polar magnetotaxis is more complex than implied by previous experiments, and revealed unexpected differences between two types of MTB living in the same sediment. Our main findings are: (1) all investigated MTB benefit of a clear magnetotactic advantage when they need to migrate over macroscopic distances for reaching their optimal living depth,(2) magnetotaxis is not used by all MTB under stationary, undisturbed conditions,(3) some MTB can rely only on chemotaxis for macroscopic vertical displacements in sediment while other cannot, and (4) some MTB use a fixed polar M-A mechanisms, while other can switch their M-A polarity, performing what can be considered as a mixed polar-axial M-A. These observations demonstrate that sedimentary M-A is controlled by complex mechanical, chemical, and temporal factors that are poorly reproduced in aqueous environments

    Continuous GPS and broad-scale deformation across the Rhine Graben and the Alps

    Get PDF
    In order to study the ongoing tectonic deformation in the Rhine Graben area, we reconstruct the local crustal velocity and the strain rate field from GPS array solutions. Following the aim of this work, we compile the velocities of permanent GPS stations belonging to various networks (EUREF, AGNES, REGAL and RGP) in central western Europe. Moreover, the strain rate field is displayed in terms of principal axes and values, while the normal and the shear components of the strain tensor are calculated perpendicular and parallel to the strike of major faults. The results are compared with the fault plane solutions of earthquakes, which have occurred in this area. A broad-scale kinematic deformation model across the Rhine Graben is provided on the basis of tectonics and velocity results of the GPS permanent stations. The area of study is divided into four rigid blocks, between which there might be relative motions. The velocity and the strain rate fields are reconstructed along their borders, by estimating a uniform rotation for each block. The tectonic behaviour is well represented by the four-block model in the Rhine Graben area, while a more detailed model will be needed for a better reconstruction of the strain field in the Alpine regio

    Palaeomagnetic and mineral magnetic analyses of the Deckenschotter of northern Switzerland and southern Germany

    Get PDF
    The Deckenschotter is a fluvial to glaciofluvial gravel unit in northern Switzerland and southern Germany. The deposits are considered the oldest preserved glacial to interglacial Quaternary deposits in the northern Alpine foreland and are thus important geomorphological markers for landscape evolution. Nevertheless, the age of the deposits is only approximately known and subject to controversial debates. This study presents the results of an extensive palaeomagnetic investigation carried out on intercalated fine-grained sediments at 11 sites of the Höhere Deckenschotter (HDS) and at 5 sites of the Tiefere Deckenschotter (TDS). The HDS show reversed and normal magnetisations, indicating deposition > 0.773 Ma, while the TDS exhibit only normal directions. Age constraints for the different sites are discussed in the light of evidence from other studies. The study therefore clearly supports the efforts to determine the age of the Deckenschotter. As data from previous palaeomagnetic studies on the HDS and TDS have not been published or preserved, this is in fact the only data-based palaeomagnetic study available

    Modelling geomagnetically induced currents in midlatitude Central Europe using a thin-sheet approach

    Get PDF
    Geomagnetically induced currents (GICs) in power systems, which can lead to transformer damage over the short and the long term, are a result of space weather events and geomagnetic variations. For a long time, only high-latitude areas were considered to be at risk from these currents, but recent studies show that considerable GICs also appear in midlatitude and equatorial countries. In this paper, we present initial results from a GIC model using a thin-sheet approach with detailed surface and subsurface conductivity models to compute the induced geoelectric field. The results are compared to measurements of direct currents in a transformer neutral and show very good agreement for short-period variations such as geomagnetic storms. Long-period signals such as quiet-day diurnal variations are not represented accurately, and we examine the cause of this misfit. The modelling of GICs from regionally varying geoelectric fields is discussed and shown to be an important factor contributing to overall model accuracy. We demonstrate that the Austrian power grid is susceptible to large GICs in the range of tens of amperes, particularly from strong geomagnetic variations in the east–west direction

    Detection of noninteracting single domain particles using first-order reversal curve diagrams

    Get PDF
    We present a highly sensitive and accurate method for quantitativedetection and characterization of noninteracting or weakly interactinguniaxial single domain particles (UNISD) in rocks and sediments. Themethod is based on high-resolution measurements of first-order reversalcurves (FORCs). UNISD particles have a unique FORC signature that can beused to isolate their contribution among other magnetic components. Thissignature has a narrow ridge along the H(c) axis of the FORC diagram,called the central ridge, which is proportional to the switching fielddistribution of the particles. Therefore, the central ridge is directlycomparable with other magnetic measurements, such as remanentmagnetization curves, with the advantage of being fully selective to SDparticles, rather than other magnetic components. This selectivity isunmatched by other magnetic unmixing methods, and offers usefulapplications ranging from characterization of SD particles forpaleointensity studies to detecting magnetofossils and ultrafineauthigenically precipitated minerals in sediments
    corecore