3,826 research outputs found
Parameter identification in a semilinear hyperbolic system
We consider the identification of a nonlinear friction law in a
one-dimensional damped wave equation from additional boundary measurements.
Well-posedness of the governing semilinear hyperbolic system is established via
semigroup theory and contraction arguments. We then investigte the inverse
problem of recovering the unknown nonlinear damping law from additional
boundary measurements of the pressure drop along the pipe. This coefficient
inverse problem is shown to be ill-posed and a variational regularization
method is considered for its stable solution. We prove existence of minimizers
for the Tikhonov functional and discuss the convergence of the regularized
solutions under an approximate source condition. The meaning of this condition
and some arguments for its validity are discussed in detail and numerical
results are presented for illustration of the theoretical findings
Doping- and size-dependent suppression of tunneling in carbon nanotubes
We study the effect of doping in the suppression of tunneling observed in
multi-walled nanotubes, incorporating as well the influence of the finite
dimensions of the system. A scaling approach allows us to encompass the
different values of the critical exponent measured for the tunneling
density of states in carbon nanotubes. We predict that further reduction of
should be observed in multi-walled nanotubes with a sizeable amount
of doping. In the case of nanotubes with a very large radius, we find a
pronounced crossover between a high-energy regime with persistent
quasiparticles and a low-energy regime with the properties of a one-dimensional
conductor.Comment: 4 pages, 2 figures, LaTeX file, pacs: 71.10.Pm, 71.20.Tx, 72.80.R
Coulomb drag shot noise in coupled Luttinger liquids
Coulomb drag shot noise has been studied theoretically for 1D interacting
electron systems, which are realized e.g. in single-wall nanotubes. We show
that under adiabatic coupling to external leads, the Coulomb drag shot noise of
two coupled or crossed nanotubes contains surprising effects, in particular a
complete locking of the shot noise in the tubes. In contrast to Coulomb drag of
the average current, the noise locking is based on a symmetry of the underlying
Hamiltonian and is not limited to asymptotically small energy scales.Comment: 4 pages Revtex, accepted for publication in PR
Regularization independent of the noise level: an analysis of quasi-optimality
The quasi-optimality criterion chooses the regularization parameter in
inverse problems without taking into account the noise level. This rule works
remarkably well in practice, although Bakushinskii has shown that there are
always counterexamples with very poor performance. We propose an average case
analysis of quasi-optimality for spectral cut-off estimators and we prove that
the quasi-optimality criterion determines estimators which are rate-optimal
{\em on average}. Its practical performance is illustrated with a calibration
problem from mathematical finance.Comment: 18 pages, 3 figure
Current bistability and hysteresis in strongly correlated quantum wires
Nonequilibrium transport properties are determined exactly for an
adiabatically connected single channel quantum wire containing one impurity.
Employing the Luttinger liquid model with interaction parameter , for very
strong interactions g\lapx 0.2, and sufficiently low temperatures, we find an
S-shaped current-voltage relation. The unstable branch with negative
differential conductance gives rise to current oscillations and hysteretic
effects. These non perturbative and non linear features appear only out of
equilibrium.Comment: 4 pages, 1 figur
Spin-orbit coupling and electron spin resonance for interacting electrons in carbon nanotubes
We review the theoretical description of spin-orbit scattering and electron
spin resonance in carbon nanotubes. Particular emphasis is laid on the effects
of electron-electron interactions. The spin-orbit coupling is derived, and the
resulting ESR spectrum is analyzed both using the effective low-energy field
theory and numerical studies of finite-size Hubbard chains and two-leg Hubbard
ladders. For single-wall tubes, the field theoretical description predicts a
double peak spectrum linked to the existence of spin-charge separation. The
numerical analysis basically confirms this picture, but also predicts
additional features in finite-size samples.Comment: 19 pages, 4 figures, invited review article for special issue in J.
Phys. Cond. Mat., published versio
Coulomb charging energy for arbitrary tunneling strength
The Coulomb energy of a small metallic island coupled to an electrode by a
tunnel junction is investigated. We employ Monte Carlo simulations to determine
the effective charging energy for arbitrary tunneling strength. For small
tunneling conductance, the data agree with analytical results based on a
perturbative treatment of electron tunneling, while for very strong tunneling
recent semiclassical results for large conductance are approached. The data
allow for an identification of the range of validity of various analytical
predictions.Comment: 4 pages REVTeX, incl 3 figures, to appear in Europhys.Let
Universality of electron correlations in conducting carbon nanotubes
Effective low-energy Hamiltonian of interacting electrons in conducting
single-wall carbon nanotubes with arbitrary chirality is derived from the
microscopic lattice model. The parameters of the Hamiltonian show very weak
dependence on the chiral angle, which makes the low energy properties of
conducting chiral nanotubes universal. The strongest Mott-like electron
instability at half filling is investigated within the self-consistent harmonic
approximation. The energy gaps occur in all modes of elementary excitations and
estimate at eV.Comment: 4 pages, 2 figure
Transport theory of carbon nanotube Y junctions
We describe a generalization of Landauer-B\"uttiker theory for networks of
interacting metallic carbon nanotubes. We start with symmetric starlike
junctions and then extend our approach to asymmetric systems. While the
symmetric case is solved in closed form, the asymmetric situation is treated by
a mix of perturbative and non-perturbative methods. For N>2 repulsively
interacting nanotubes, the only stable fixed point of the symmetric system
corresponds to an isolated node. Detailed results for both symmetric and
asymmetric systems are shown for N=3, corresponding to carbon nanotube Y
junctions.Comment: submitted to New Journal of Physics, Focus Issue on Carbon Nanotubes,
15 pages, 3 figure
- …