15 research outputs found
Imaging of programmed cell death in arrhythmogenic right ventricle cardiomyopathy/dysplasia
Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is a myocardial disease that predominantly affects the right ventricle (RV). Its hallmark feature is fibrofatty replacement of the RV myocardium. Apoptosis in ARVC/D has been proposed as an important process that mediates the slow, ongoing loss of heart muscle cells which is followed by ventricular dysfunction. We aimed to establish whether cardiac apoptosis can be assessed noninvasively in patients with ARVC/D. Six patients fulfilling the ARVC/D criteria were studied. Regional myocardial apoptosis was assessed with (99m)Tc-annexin V scintigraphy. Overall, the RV wall showed a higher (99m)Tc-annexin V signal than the left ventricular wall (p = 0.049) and the interventricular septum (p = 0.026). However, significantly increased uptake of (99m)Tc-annexin V in the RV was present in only three of the six ARVC/D patients (p = 0.001, compared to (99m)Tc-annexin V uptake in the RV wall of the other three patients). Our results are suggestive of a chamber-specific apoptotic process. Although the role of apoptosis in ARVC/D is unsolved, the ability to assess apoptosis noninvasively may aid in the diagnostic course. In addition, the ability to detect apoptosis in vivo with (99m)Tc-annexin V scintigraphy might allow individual monitoring of disease progression and response to diverse treatments aimed at counteracting ARVC/D progressio
Positron emission tomography; viable tool in patients pre-CABG?
Vascular Biology and Interventio
Assessment of left ventricular volumes; reliable by gated SPECT?
Ventricular Dysfunction & Heart Failur
Assessment of left ventricular function: visual or quantitative?
Cardiovascular Aspects of Radiolog
CMR-determined scar volume: predictive for ventricular tachycardias?
The interesting data reported by Bernhardt et al. strengthen the diagnostic benefit of CMR in patients with ischemic cardiomyopathy. Consequently, the presence, location and size of the CMR-determined scar tissue may be used for better risk stratification in patients with ischemic cardiomyopathy eligible for ICD therapy
Development of a real-time polymerase chain reaction assay for prediction of the uptake of meta-[I-131]iodobenzylguanidine by neuroblastoma tumors
Purpose: The suitability of neuroblastoma patients for therapy using radiolabeled meta-iodobenzylguanidine (MIBG) is determined by scintigraphy after the administration of a tracer dose of radioiodinated MIBG whose uptake is dependent upon the cellular expression of the noradrenaline transporter (NAT). As a possible alternative to gamma camera imaging, we developed a novel molecular assay of NAT expression. mRNA extracted from neuroblastoma biopsy samples, obtained retrospectively, was reverse transcribed, and NAT-specific cDNA was quantified by real-time PCR, referenced against the expression of the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase.
Experimental Design: Tumor specimens from 54 neuroblastoma patients were analyzed using real-time PCR, and NAT expression was compared with the corresponding diagnostic scintigrams.
Results: Forty-eight of 54 (89%) of tumors showed MIBG uptake by scintigraphy. NAT expression was found to be significantly associated with MIBG uptake (P < 0.0001, Fisher's exact test). None of the samples from the six tumors that failed to concentrate MIBG expressed detectable levels of the NAT (specificity = 1.0). However, of the 48 MIBG uptake-positive tumors, only 43 (90%) expressed NAT (sensitivity = 0.9). The real-time PCR test has a positive predictive value of 1.0 but a negative predictive value of 0.55.
Conclusions: The results indicate that whereas this method has substantial ability to predict the capacity of neuroblastoma tumors to accumulate MIBG, confirmation is required in prospective studies to determine more accurately the predictive strength of the test and its role in the management of patients with neuroblastoma
EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision.
Since the publication of the European Association of Nuclear Medicine (EANM) procedural guidelines for radionuclide myocardial perfusion imaging (MPI) in 2005, many small and some larger steps of progress have been made, improving MPI procedures. In this paper, the major changes from the updated 2015 procedural guidelines are highlighted, focusing on the important changes related to new instrumentation with improved image information and the possibility to reduce radiation exposure, which is further discussed in relation to the recent developments of new International Commission on Radiological Protection (ICRP) models. Introduction of the selective coronary vasodilator regadenoson and the use of coronary CT-contrast agents for hybrid imaging with SPECT/CT angiography are other important areas for nuclear cardiology that were not included in the previous guidelines. A large number of minor changes have been described in more detail in the fully revised version available at the EANM home page: http://eanm.org/publications/guidelines/2015_07_EANM_FINAL_myocardial_perfusion_guideline.pdf