9 research outputs found

    Guidelines on the diagnosis, clinical assessments, treatment and management for CLN2 disease patients

    Get PDF
    Background: CLN2 disease (Neuronal Ceroid Lipofuscinosis Type 2) is an ultra-rare, neurodegenerative lysosomal storage disease, caused by an enzyme deficiency of tripeptidyl peptidase 1 (TPP1). Lack of disease awareness and the non-specificity of presenting symptoms often leads to delayed diagnosis. These guidelines provide robust evidence-based, expert-agreed recommendations on the risks/benefits of disease-modifying treatments and the medical interventions used to manage this condition. Methods: An expert mapping tool process was developed ranking multidisciplinary professionals, with knowledge of CLN2 disease, diagnostic or management experience of CLN2 disease, or family support professionals. Individuals were sequentially approached to identify two chairs, ensuring that the process was transparent and unbiased. A systematic literature review of published evidence using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidance was independently and simultaneously conducted to develop key statements based upon the strength of the publications. Clinical care statements formed the basis of an international modified Delphi consensus determination process using the virtual meeting (Within3) online platform which requested experts to agree or disagree with any changes. Statements reaching the consensus mark became the guiding statements within this manuscript, which were subsequently assessed against the Appraisal of Guidelines for Research and Evaluation (AGREEII) criteria. Results: Twenty-one international experts from 7 different specialities, including a patient advocate, were identified. Fifty-three guideline statements were developed covering 13 domains: General Description and Statements, Diagnostics, Clinical Recommendations and Management, Assessments, Interventions and Treatment, Additional Care Considerations, Social Care Considerations, Pain Management, Epilepsy / Seizures, Nutritional Care Interventions, Respiratory Health, Sleep and Rest, and End of Life Care. Consensus was reached after a single round of voting, with one exception which was revised, and agreed by 100% of the SC and achieved 80% consensus in the second voting round. The overall AGREE II assessment score obtained for the development of the guidelines was 5.7 (where 1 represents the lowest quality, and 7 represents the highest quality). Conclusion: This program provides robust evidence- and consensus-driven guidelines that can be used by all healthcare professionals involved in the management of patients with CLN2 disease and other neurodegenerative disorders. This addresses the clinical need to complement other information available

    A critical review of child abuse and its management in Africa

    No full text
    Introduction: Child abuse in Africa is a major threat to the achievement of the sustainable development goals on the continent and has become increasingly topical with a dramatic increase in recognition and an appreciation of the long term harmful effects on the affected population. The aim of this review was to outline current management of child abuse (especially sexual abuse) and highlight current preventive practice that could be beneficial in a resource-limited environment. Methods: A search of Medline and reference lists of the literature on child abuse in African countries and relevant world literature was conducted in December 2016. The review was written narratively, rather than systematically as a general overview was desired, instead of a focused view of individual aspects of child abuse. Recommendations: Opportunities for early identification of child abuse, as well as research into preventative strategies should be prioritised. Establishing strong institutions and guidance to tackle abuse when it occurs is both beneficial to the survivors and the continent at large. Keywords: Child abuse, Sexual abuse, Africa, Domestic violenc

    First Application of Ketogenic Diet on a Child With Intractable Epilepsy in Ghana

    No full text
    The prevalence of epilepsy in sub-Saharan Africa is higher than in other parts of the world, but it is short of the effective measure on treating intractable epilepsy. Epilepsy surgery is not easy to be performed due to the high cost and demand of operational skills. The authors planned to perform ketogenic diet therapy for the children with intractable epilepsy in Ghana with regard to its low cost and simple procedure. The candidate is a 10-month-old girl with epilepsy with unknown etiology. Her seizures couldn’t be controlled by more than 3 antiepileptic drugs. Her development delayed severely due to frequent seizures. The authors successfully applied ketogenic diet for her. Her seizures were completely controlled after 2 weeks’ therapy. Her mental condition was improved after that. The authors get much experience from this case for further developing ketogenic diet in Africa. This is the first report that ketogenic diet was applied to control intractable epilepsy in West Africa

    Autism Spectrum Disorders in Africa: Current Challenges in Identification, Assessment, and Treatment: A Report on the International Child Neurology Association Meeting on ASD in Africa, Ghana, April 3-5, 2014

    No full text
    Abstract: Prevalence of autism spectrum disorders has increased over recent years, however, little is known about the identification and management of autism spectrum disorder in Africa. This report summarizes a workshop on autism spectrum disorder in Africa under the auspices of the International Child Neurology Association and the African Child Neurology Association through guided presentations and working group reports, focusing on identification, diagnosis, management, and community support. A total of 47 delegates participated from 14 African countries. Although there was a huge variability in services across the countries represented, numbers of specialists assessing and managing autism spectrum disorder was small relative to populations served. Strategies were proposed to improve identification, diagnosis, management and support delivery for individuals with autism spectrum disorder across Africa in these culturally diverse, low-resource settings. Emphasis on raising public awareness through community engagement and improving access to information and training in autism spectrum disorder. Special considerations for the cultural, linguistic, and socioeconomic factors within Africa are discussed

    Cornelia de Lange syndrome in diverse populations

    Get PDF
    Cornelia de Lange syndrome (CdLS) is a dominant multisystemic malformation syndrome due to mutations in five genes—NIPBL, SMC1A, HDAC8, SMC3, and RAD21. The characteristic facial dysmorphisms include microcephaly, arched eyebrows, synophrys, short nose with depressed bridge and anteverted nares, long philtrum, thin lips, micrognathia, and hypertrichosis. Most affected individuals have intellectual disability, growth deficiency, and upper limb anomalies. This study looked at individuals from diverse populations with both clinical and molecularly confirmed diagnoses of CdLS by facial analysis technology. Clinical data and images from 246 individuals with CdLS were obtained from 15 countries. This cohort included 49% female patients and ages ranged from infancy to 37 years. Individuals were grouped into ancestry categories of African descent, Asian, Latin American, Middle Eastern, and Caucasian. Across these populations, 14 features showed a statistically significant difference. The most common facial features found in all ancestry groups included synophrys, short nose with anteverted nares, and a long philtrum with thin vermillion of the upper lip. Using facial analysis technology we compared 246 individuals with CdLS to 246 gender/age matched controls and found that sensitivity was equal or greater than 95% for all groups. Specificity was equal or greater than 91%. In conclusion, we present consistent clinical findings from global populations with CdLS while demonstrating how facial analysis technology can be a tool to support accurate diagnoses in the clinical setting. This work, along with prior studies in this arena, will assist in earlier detection, recognition, and treatment of CdLS worldwide.Supplementary Table 1 Participants with photographs in Figures 2-5 from 10 countries. Supplementary Table 2. Geometric and texture feature comparison of Global (combined African descent, Asian, Latin American, Caucasian) CdLS individuals with normal controls using digital facial analysis technology. The ranges of the geometric linear features were normalized by the ear‐to‐ear distance. Geometric angle features are presented in degrees. Texture features were computed at three scales (r1, r2, and r3). Features are presented in order of their relevance for the diagnosis of CdLS. Supplementary Table 3. Geometric and texture feature comparison of African descent CdLS individuals with normal controls using digital facial analysis technology. The ranges of the geometric linear features were normalized by the ear‐to‐ear distance. Geometric angle features are presented in degrees. Texture features were computed at three scales (r1, r2, and r3). Features are presented in order of their relevance for the diagnosis of CdLS. Supplementary Table 4. Geometric and texture feature comparison of Asian CdLS individuals with normal controls using digital facial analysis technology. The ranges of the geometric linear features were normalized by the ear‐to‐ear distance. Geometric angle features are presented in degrees. Texture features were computed at three scales (r1, r2, and r3). Features are presented in order of their relevance for the diagnosis of CdLS. Supplementary Table 5. Geometric and texture feature comparison of Latin American CdLS individuals with normal controls using digital facial analysis technology. The ranges of the geometric linear features were normalized by the ear‐to‐ear distance. Geometric angle features are presented in degrees. Texture features were computed at three scales (r1, r2, and r3). Features are presented in order of their relevance for the diagnosis of CdLS. Supplementary Table 6. Geometric and texture feature comparison of Caucasian CdLS individuals with normal controls using digital facial analysis technology. The ranges of the geometric linear features were normalized by the ear‐to‐ear distance. Geometric angle features are presented in degrees. Texture features were computed at three scales (r1, r2, and r3). Features are presented in order of their relevance for the diagnosis of CdLS. Supplementary Figure 1. Global: Graph of area under the ROC curve (AUC), accuracy, sensitivity, and specificity versus the number of features selected. Supplementary Figure 2. African: Graph of area under the ROC curve (AUC), accuracy, sensitivity, and specificity versus the number of features selected. Supplementary Figure 3. Asian: Graph of area under the ROC curve (AUC), accuracy, sensitivity, and specificity versus the number of features selected. Supplementary Figure 4. Latin American: Graph of area under the ROC curve (AUC), accuracy, sensitivity, and specificity versus the number of features selected. Supplementary Figure 5. Caucasian: Graph of area under the ROC curve (AUC), accuracy, sensitivity, and specificity versus the number of features selectedPK and MM are supported by the Division of Intramural Research at the National Human Genome Research, NIH. Partial funding of this project was from a philanthropic gift from the Government of Abu Dhabi to the Children's National Health System. VS is supported by the Chulalongkorn Academic Advancement Into Its 2nd Century Project and the Thailand Research Fund. We would also like to acknowledge other clinicians who supported this work—MZ, JP, and GC. We would like to acknowledge that IDK, LD, MK, and SR are supported by the CdLS Center Endowed Funds at The Children's Hospital of Philadelphia and PO1 HD052860 from the NICHD. ES is supported by a fellowship from PKS Italia and PKSKids USA. LD was also supported by a postdoctoral training grant (T32 GM008638) from the NIGMS.http://wileyonlinelibrary.com/journal/ajmga2020-02-01hj2019Genetic

    Cornelia de Lange Syndrome in Diverse Populations.

    Get PDF
    Cornelia de Lange syndrome (CdLS) is a dominant multisystemic malformation syndrome due to mutations in five genes—NIPBL, SMC1A, HDAC8, SMC3, and RAD21. The characteristic facial dysmorphisms include microcephaly, arched eyebrows, synophrys, short nose with depressed bridge and anteverted nares, long philtrum, thin lips, micrognathia, and hypertrichosis. Most affected individuals have intellectual disability, growth deficiency, and upper limb anomalies. This study looked at individuals from diverse populations with both clinical and molecularly confirmed diagnoses of CdLS by facial analysis technology. Clinical data and images from 246 individuals with CdLS were obtained from 15 countries. This cohort included 49% female patients and ages ranged from infancy to 37 years. Individuals were grouped into ancestry categories of African descent, Asian, Latin American, Middle Eastern, and Caucasian. Across these populations, 14 features showed a statistically significant difference. The most common facial features found in all ancestry groups included synophrys, short nose with anteverted nares, and a long philtrum with thin vermillion of the upper lip. Using facial analysis technology we compared 246 individuals with CdLS to 246 gender/age matched controls and found that sensitivity was equal or greater than 95% for all groups. Specificity was equal or greater than 91%. In conclusion, we present consistent clinical findings from global populations with CdLS while demonstrating how facial analysis technology can be a tool to support accurate diagnoses in the clinical setting. This work, along with prior studies in this arena, will assist in earlier detection, recognition, and treatment of CdLS worldwide.Supplementary Table 1 Participants with photographs in Figures 2-5 from 10 countries. Supplementary Table 2. Geometric and texture feature comparison of Global (combined African descent, Asian, Latin American, Caucasian) CdLS individuals with normal controls using digital facial analysis technology. The ranges of the geometric linear features were normalized by the ear‐to‐ear distance. Geometric angle features are presented in degrees. Texture features were computed at three scales (r1, r2, and r3). Features are presented in order of their relevance for the diagnosis of CdLS. Supplementary Table 3. Geometric and texture feature comparison of African descent CdLS individuals with normal controls using digital facial analysis technology. The ranges of the geometric linear features were normalized by the ear‐to‐ear distance. Geometric angle features are presented in degrees. Texture features were computed at three scales (r1, r2, and r3). Features are presented in order of their relevance for the diagnosis of CdLS. Supplementary Table 4. Geometric and texture feature comparison of Asian CdLS individuals with normal controls using digital facial analysis technology. The ranges of the geometric linear features were normalized by the ear‐to‐ear distance. Geometric angle features are presented in degrees. Texture features were computed at three scales (r1, r2, and r3). Features are presented in order of their relevance for the diagnosis of CdLS. Supplementary Table 5. Geometric and texture feature comparison of Latin American CdLS individuals with normal controls using digital facial analysis technology. The ranges of the geometric linear features were normalized by the ear‐to‐ear distance. Geometric angle features are presented in degrees. Texture features were computed at three scales (r1, r2, and r3). Features are presented in order of their relevance for the diagnosis of CdLS. Supplementary Table 6. Geometric and texture feature comparison of Caucasian CdLS individuals with normal controls using digital facial analysis technology. The ranges of the geometric linear features were normalized by the ear‐to‐ear distance. Geometric angle features are presented in degrees. Texture features were computed at three scales (r1, r2, and r3). Features are presented in order of their relevance for the diagnosis of CdLS. Supplementary Figure 1. Global: Graph of area under the ROC curve (AUC), accuracy, sensitivity, and specificity versus the number of features selected. Supplementary Figure 2. African: Graph of area under the ROC curve (AUC), accuracy, sensitivity, and specificity versus the number of features selected. Supplementary Figure 3. Asian: Graph of area under the ROC curve (AUC), accuracy, sensitivity, and specificity versus the number of features selected. Supplementary Figure 4. Latin American: Graph of area under the ROC curve (AUC), accuracy, sensitivity, and specificity versus the number of features selected. Supplementary Figure 5. Caucasian: Graph of area under the ROC curve (AUC), accuracy, sensitivity, and specificity versus the number of features selectedPK and MM are supported by the Division of Intramural Research at the National Human Genome Research, NIH. Partial funding of this project was from a philanthropic gift from the Government of Abu Dhabi to the Children's National Health System. VS is supported by the Chulalongkorn Academic Advancement Into Its 2nd Century Project and the Thailand Research Fund. We would also like to acknowledge other clinicians who supported this work—MZ, JP, and GC. We would like to acknowledge that IDK, LD, MK, and SR are supported by the CdLS Center Endowed Funds at The Children's Hospital of Philadelphia and PO1 HD052860 from the NICHD. ES is supported by a fellowship from PKS Italia and PKSKids USA. LD was also supported by a postdoctoral training grant (T32 GM008638) from the NIGMS.http://wileyonlinelibrary.com/journal/ajmga2020-02-01hj2019Genetic
    corecore