12 research outputs found

    The guinea pig ileum lacks the direct, high-potency, M2-muscarinic, contractile mechanism characteristic of the mouse ileum

    Get PDF
    We explored whether the M2 muscarinic receptor in the guinea pig ileum elicits a highly potent, direct-contractile response, like that from the M3 muscarinic receptor knockout mouse. First, we characterized the irreversible receptor-blocking activity of 4-DAMP mustard in ileum from muscarinic receptor knockout mice to verify its M3 selectivity. Then, we used 4-DAMP mustard to inactivate M3 responses in the guinea pig ileum to attempt to reveal direct, M2 receptor-mediated contractions. The muscarinic agonist, oxotremorine-M, elicited potent contractions in ileum from wild-type, M2 receptor knockout, and M3 receptor knockout mice characterized by negative log EC50 (pEC50) values ± SEM of 6.75 ± 0.03, 6.26 ± 0.05, and 6.99 ± 0.08, respectively. The corresponding Emax values in wild-type and M2 receptor knockout mice were approximately the same, but that in the M3 receptor knockout mouse was only 36% of wild type. Following 4-DAMP mustard treatment, the concentration–response curve of oxotremorine-M in wild-type ileum resembled that of the M3 knockout mouse in terms of its pEC50, Emax, and inhibition by selective muscarinic antagonists. Thus, 4-DAMP mustard treatment appears to inactivate M3 responses selectively and renders the muscarinic contractile behavior of the wild-type ileum similar to that of the M3 knockout mouse. Following 4-DAMP mustard treatment, the contractile response of the guinea pig ileum to oxotremorine-M exhibited low potency and a competitive-antagonism profile consistent with an M3 response. The guinea pig ileum, therefore, lacks a direct, highly potent, M2-contractile component but may have a direct, lower potency M2 component

    Increased prevalence of testicular microlithiasis in men with familial testicular cancer and their relatives

    Get PDF
    Testicular germ cell tumours (TGCT) cluster in families, but responsible genes remain unidentified. The association between testicular microlithiasis (TM) and testicular carcinoma in situ (CIS) suggests that TM may be a TC risk factor. We report testicular ultrasound findings in men with familial TGCT (FTGCT) and their unaffected relatives. A total of 81 men (48 affected and 33 unaffected) from 31 families with ⩾2 TC cases underwent testicular ultrasound. Testicular microlithiasis was defined as either ‘classic' (⩾5 microliths) or ‘limited' (<5 microliths). Statistical analyses used Fisher's exact test and permutation testing. Testicular microlithiasis was more frequent in the contralateral testicles of men with a history of TGCT (affected men) than in unaffected men (48 vs 24%, P=0.04). The association appeared stronger for classic TM (21 vs 9%) than for limited TM (27 vs 15%). Testicular microlithiases were bilateral in six out of seven (87%) unaffected men. Among affected men, TM was not associated with histology, age at diagnosis or cancer treatment. Of the 31 families, 10 accounted for a majority (61%) of the TM cases identified (P=0.11). Testicular microlithiasis was more prevalent among FTGCT family members than described previously in the general population, and was more common among FTGCT cases vs unaffected blood relatives. Testicular microlithiasis appeared to cluster in certain families. These findings suggest both a familial predisposition to TM and an association between TM and FTGCT. If proven, this could be clinically important to men in FTGCT families, and may be useful in identifying specific genes involved in FTGCT

    Effects of ionizing radiation on embryos of the tardigrade Milnesium cf. tardigradum at different stages of development

    Get PDF
    Tardigrades represent one of the most desiccation and radiation tolerant animals on Earth, and several studies havedocumented their tolerance in the adult stage. Studies on tolerance during embryological stages are rare, but differentialeffects of desiccation and freezing on different developmental stages have been reported, as well as dose-dependent effectof gamma irradiation on tardigrade embryos. Here, we report a study evaluating the tolerance of eggs from theeutardigrade Milnesium cf. tardigradum to three doses of gamma radiation (50, 200 and 500 Gy) at the early, middle, andlate stage of development. We found that embryos of the middle and late developmental stages were tolerant to all doses,while eggs in the early developmental stage were tolerant only to a dose of 50 Gy, and showed a declining survival withhigher dose. We also observed a delay in development of irradiated eggs, suggesting that periods of DNA repair might havetaken place after irradiation induced damage. The delay was independent of dose for eggs irradiated in the middle and latestage, possibly indicating a fixed developmental schedule for repair after induced damage. These results show that thetolerance to radiation in tardigrade eggs changes in the course of their development. The mechanisms behind this patternare unknown, but may relate to changes in mitotic activities over the embryogenesis and/or to activation of responsemechanisms to damaged DNA in the course of development
    corecore