19,207 research outputs found
Accuracy And Error Study Of Horizontal And Vertical Measurements With Single View Metrology For Road Surveying
High quality digital image can be produced and stored with cost effective embedded system, thanks to advancement of low power digital camera and hardware accelerated high definition video image compression System-on- Chip. Image recorded with these multi-megapixel digital cameras allowed the world to be digitized more accurately (compared with conventional VGA camera with low resolution) and hence enable the use of single image as the metrology tool. Using the single view geometry techniques (planar homography, vanishing points and vanishing lines) widely accepted by the community, the suitability of applying these techniques with error reduced for road surveying is studied and reported in this work
Tensor hierarchies, Borcherds algebras and E11
Gauge deformations of maximal supergravity in D=11-n dimensions generically
give rise to a tensor hierarchy of p-form fields that transform in specific
representations of the global symmetry group E(n). We derive the formulas
defining the hierarchy from a Borcherds superalgebra corresponding to E(n).
This explains why the E(n) representations in the tensor hierarchies also
appear in the level decomposition of the Borcherds superalgebra. We show that
the indefinite Kac-Moody algebra E(11) can be used equivalently to determine
these representations, up to p=D, and for arbitrarily large p if E(11) is
replaced by E(r) with sufficiently large rank r.Comment: 22 pages. v2: Published version (except for a few minor typos
detected after the proofreading, which are now corrected
Prelimbic cortex maintains attention to category-relevant information and flexibly updates category representations
Category learning groups stimuli according to similarity or function. This involves finding and attending to stimulus features that reliably inform category membership. Although many of the neural mechanisms underlying categorization remain elusive, models of human category learning posit that prefrontal cortex plays a substantial role. Here, we investigated the role of the prelimbic cortex (PL) in rat visual category learning by administering excitotoxic lesions before category training and then evaluating the effects of the lesions with computational modeling. Using a touchscreen apparatus, rats (female and male) learned to categorize distributions of category stimuli that varied along two continuous dimensions. For some rats, categorizing the stimuli encouraged selective attention towards a single stimulus dimension (i.e., 1D tasks). For other rats, categorizing the stimuli required divided attention towards both stimulus dimensions (i.e., 2D tasks). Testing sessions then examined generalization to novel exemplars. PL lesions impaired learning and generalization for the 1D tasks, but not the 2D tasks. Then, a neural network was fit to the behavioral data to examine how the lesions affected categorization. The results suggest that the PL facilitates category learning by maintaining attention to category-relevant information and updating category representations
Upregulation of the microRNA cluster at the Dlk1-Dio3 locus in lung adenocarcinoma.
Mice in which lung epithelial cells can be induced to express an oncogenic Kras(G12D) develop lung adenocarcinomas in a manner analogous to humans. A myriad of genetic changes accompany lung adenocarcinomas, many of which are poorly understood. To get a comprehensive understanding of both the transcriptional and post-transcriptional changes that accompany lung adenocarcinomas, we took an omics approach in profiling both the coding genes and the non-coding small RNAs in an induced mouse model of lung adenocarcinoma. RNAseq transcriptome analysis of Kras(G12D) tumors from F1 hybrid mice revealed features specific to tumor samples. This includes the repression of a network of GTPase-related genes (Prkg1, Gnao1 and Rgs9) in tumor samples and an enrichment of Apobec1-mediated cytosine to uridine RNA editing. Furthermore, analysis of known single-nucleotide polymorphisms revealed not only a change in expression of Cd22 but also that its expression became allele specific in tumors. The most salient finding, however, came from small RNA sequencing of the tumor samples, which revealed that a cluster of ∼53 microRNAs and mRNAs at the Dlk1-Dio3 locus on mouse chromosome 12qF1 was markedly and consistently increased in tumors. Activation of this locus occurred specifically in sorted tumor-originating cancer cells. Interestingly, the 12qF1 RNAs were repressed in cultured Kras(G12D) tumor cells but reactivated when transplanted in vivo. These microRNAs have been implicated in stem cell pleuripotency and proteins targeted by these microRNAs are involved in key pathways in cancer as well as embryogenesis. Taken together, our results strongly imply that these microRNAs represent key targets in unraveling the mechanism of lung oncogenesis
Nanotechnology in dentistry: prevention, diagnosis, and therapy
Ensanya Ali Abou Neel,1–3 Laurent Bozec,3 Roman A Perez,4,5 Hae-Won Kim,4–6 Jonathan C Knowles3,5 1Division of Biomaterials, Operative Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia; 2Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta, Egypt; 3UCL Eastman Dental Institute, Biomaterials and Tissue Engineering, London, UK; 4Institute of Tissue Regenerative Engineering (ITREN), 5Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, 6Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea Abstract: Nanotechnology has rapidly expanded into all areas of science; it offers significant alternative ways to solve scientific and medical questions and problems. In dentistry, nanotechnology has been exploited in the development of restorative materials with some significant success. This review discusses nanointerfaces that could compromise the longevity of dental restorations, and how nanotechnolgy has been employed to modify them for providing long-term successful restorations. It also focuses on some challenging areas in dentistry, eg, oral biofilm and cancers, and how nanotechnology overcomes these challenges. The recent advances in nanodentistry and innovations in oral health-related diagnostic, preventive, and therapeutic methods required to maintain and obtain perfect oral health, have been discussed. The recent advances in nanotechnology could hold promise in bringing a paradigm shift in dental field. Although there are numerous complex therapies being developed to treat many diseases, their clinical use requires careful consideration of the expense of synthesis and implementation. Keywords: nanotechnology, nanointerfaces, biofilm-related oral diseases, tissue engineering, drug delivery, toxicit
Aging Logarithmic Conformal Field Theory : a holographic view
We consider logarithmic extensions of the correlation and response functions
of scalar operators for the systems with aging as well as Schr\"odinger
symmetry. Aging is known to be the simplest nonequilibrium phenomena, and its
physical significances can be understood by the two-time correlation and
response functions. Their logarithmic part is completely fixed by the bulk
geometry in terms of the conformal weight of the dual operator and the dual
particle number.
Motivated by recent experimental realizations of Kardar-Parisi-Zhang
universality class in growth phenomena and its subsequent theoretical extension
to aging, we investigate our two-time correlation functions out of equilibrium,
which show several qualitatively different behaviors depending on the
parameters in our theory. They exhibit either growing or aging, i.e. power-law
decaying, behaviors for the entire range of our scaling time. Surprisingly, for
some parameter ranges, they exhibit growing at early times as well as aging at
later times.Comment: 1+26 pages, 15 figure
Can we study 3D grid codes non-invasively in the human brain? Methodological considerations and fMRI findings
Recent human functional magnetic resonance imaging (fMRI) and animal electrophysiology studies suggest that grid cells in entorhinal cortex are an efficient neural mechanism for encoding knowledge about the world, not only for spatial location but also for more abstract cognitive information. The world, be it physical or abstract, is often high-dimensional, but grid cells have been mainly studied on a simple two-dimensional (2D) plane. Recent theoretical studies have proposed how grid cells encode three-dimensional (3D) physical space, but it is unknown whether grid codes can be examined non-invasively in humans. Here, we investigated whether it was feasible to test different 3D grid models using fMRI based on the direction-modulated property of grid signals. In doing so, we developed interactive software to help researchers visualize 3D grid fields and predict grid activity in 3D as a function of movement directions. We found that a direction-modulated grid analysis was sensitive to one type of 3D grid model - a face-centred cubic (FCC) lattice model. As a proof of concept, we searched for 3D grid-like signals in human entorhinal cortex using a novel 3D virtual reality paradigm and a new fMRI analysis method. We found that signals in the left entorhinal cortex were explained by the FCC model. This is preliminary evidence for 3D grid codes in the human brain, notwithstanding the inherent methodological limitations of fMRI. We believe that our findings and software serve as a useful initial stepping-stone for studying grid cells in realistic 3D worlds and also, potentially, for interrogating abstract high-dimensional cognitive processes
Hamiltonian analysis of BHT massive gravity
We study the Hamiltonian structure of the Bergshoeff-Hohm-Townsend (BHT)
massive gravity with a cosmological constant. In the space of coupling
constants , our canonical analysis reveals the special role of
the condition . In this sector, the dimension of the
physical phase space is found to be , which corresponds to two
Lagrangian degree of freedom. When applied to the AdS asymptotic region, the
canonical approach yields the conserved charges of the BTZ black hole, and
central charges of the asymptotic symmetry algebra.Comment: LATEX, 21 pages; v2: minor correction
- …