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Highlights 42 

• Rats categorize distribution of stimuli containing two continuous dimensions 43 

• Prefrontal lesions impair category tasks containing irrelevant stimulus information 44 

• Prefrontal lesions do not affect tasks containing only relevant stimulus information 45 

• Prefrontal lesions impair trial-by-trial updating of category representations 46 
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Abstract 65 

Category learning groups stimuli according to similarity or function. This involves finding and 66 

attending to stimulus features that reliably inform category membership. Although many of the 67 

neural mechanisms underlying categorization remain elusive, models of human category learning 68 

posit that prefrontal cortex plays a substantial role. Here, we investigated the role of the 69 

prelimbic cortex (PL) in rat visual category learning by administering excitotoxic lesions before 70 

category training and then evaluating the effects of the lesions with computational modeling. 71 

Using a touchscreen apparatus, rats (female and male) learned to categorize distributions of 72 

category stimuli that varied along two continuous dimensions. For some rats, categorizing the 73 

stimuli encouraged selective attention towards a single stimulus dimension (i.e., 1D tasks). For 74 

other rats, categorizing the stimuli required divided attention towards both stimulus dimensions 75 

(i.e., 2D tasks). Testing sessions then examined generalization to novel exemplars. PL lesions 76 

impaired learning and generalization for the 1D tasks, but not the 2D tasks. Then, a neural 77 

network was fit to the behavioral data to examine how the lesions affected categorization. The 78 

results suggest that the PL facilitates category learning by maintaining attention to category-79 

relevant information and updating category representations.  80 

 81 

 82 

Categorization is the process of grouping perceptually or functionally related objects and events. 83 

Abundant evidence from neuroimaging (Kumaran, Summerfield, Hassabis, & Maguire, 2009; 84 

Bowman & Zeitheramova, 2018) and physiology (Freedman et al., 2001) experiments supports 85 

the recruitment of prefrontal cortex (PFC) in categorization tasks. The PFC is also important for 86 

transitive inference, a mechanism that infers new information and promotes generalization by 87 



extrapolating overlapping information across multiple episodes (Koscik & Tranel, 2012; 88 

Zeithamova, Dominick, & Preston, 2012). 89 

Accordingly, theories of categorization predict that the PFC plays a substantial role in 90 

learning new categories. COVIS (COmpetition between Verbal and Implicit Systems) posits that 91 

the PFC governs a declarative system that learns new categories by testing explicit category rules 92 

(Ashby et al., 1998). The COVIS framework has been tested empirically by training participants 93 

to categorize distributions of visual stimuli that vary along two continuous dimensions (Maddox, 94 

Ashby, & Bohil, 2003; Smith et al., 2012). In one condition, only one stimulus dimension is 95 

category-relevant, and learning involves selective attention to that dimension (1D tasks; Fig. 1B). 96 

In a second condition, both stimulus dimensions are relevant, and learning requires divided 97 

attention to both dimensions (2D tasks; Fig. 1C). COVIS predicts that the declarative system 98 

(and the PFC) is important for learning 1D tasks, as they can be solved by a unidimensional 99 

category rule (Ashby & Maddox, 2011). This prediction is supported by neuroimaging 100 

experiments (Nomura et al., 2006). 101 

Rodents have become great models to examine mechanisms underlying complex 102 

behavior (Zoccolan, Oertelt, DiCarlo & Cox, 2009; Vinken, Vermaercke & Op de Beeck, 2014). 103 

We recently developed rodent versions of the 1D and 2D tasks using a touchscreen apparatus to 104 

investigate rat category learning (Broschard, Kim, Love, Wasserman, & Freeman, 2019). The 105 

current experiment extends this work by examining the contributions of the prelimbic (PL) area 106 

of the rat PFC. Broschard et al., 2019 concluded that rats use selective attention to learn the 1D 107 

tasks and bias attention towards the category-relevant dimension. We predict that this is 108 

mediated by the PL; therefore, inactivating the PL will impair learning for the 1D tasks. This 109 

prediction is supported by calcium imaging in the mouse medial frontal cortex during a go/no-go 110 



version of the 1D task (Reinert et al., 2021). This prediction also aligns with Love & Gureckis 111 

(2007), who proposed that the PFC is synonymous to the selective attention mechanism of the 112 

neural network model SUSTAIN (Supervised and Unsupervised STratified Adaptive Incremental 113 

Network; Love, Medin, & Gureckis, 2004). The current experiment tested this prediction 114 

directly. 115 

There is contention regarding whether rodent PL is comparable to the primate PFC 116 

(Lauback, Amarante, Swanson, & White, 2018). PL satisfies early definitions of PFC by 117 

exhibiting bidirectional communication with the medial dorsal thalamus (Rose & Woolsey, 118 

1948). Additionally, some functions of PL are analogous to primate PFC, including working 119 

memory (Horst & Laubach, 2009), goal directed behavior (Ostlund 2005), response conflict 120 

(Wit, Kosaki, Balleine, & Dickinson, 2006), behavioral flexibility (Ragozzino 2007), and 121 

attention (Tait, Bowman, Neuwirth & Brown, 2018). However, anatomical investigations 122 

conclude that PL may be homologous to cingulate cortex in primates (Heilbronner et al., 2016). 123 

Furthermore, all of rodent frontal cortex is agranular, highlighting large differences in the 124 

cellular makeup between rodents and primates (Uylings & Eden, 1991; Seamans, Lapish & 125 

Durstewitz, 2008). Therefore, generalizing the results of the current experiment to primate PFC 126 

requires careful consideration of anatomical and functional comparisons.  127 

 Here, we investigated the role of the PL in visual category learning in rats. Rats 128 

underwent stereotaxic surgery to lesion the PL with NMDA. After recovery, the rats were trained 129 

to learn the 1D or 2D categorization tasks. Then, we fit the neural network SUSTAIN to the 130 

behavioral data to further examine the role of the PL, specifically as it pertains to selective 131 

attention. Together, the results suggest that the PL maintains attention to category-relevant 132 

information and updates category representations according to recent exemplars.  133 



  134 

Materials and Methods 135 

Subjects 136 

Male (n = 16, mean weight: ~350 grams) and female (n = 16, mean weight: ~250 grams) Long-137 

Evans rats were studied. Upon arriving in the animal colony, rats were put on a 12-hour 138 

light/dark cycle and given ad libitum access to food and water. After acclimating to the new 139 

environment for a week, food was restricted. Weights were recorded daily to ensure weights did 140 

not go below 85% of the rats’ free feeding weight. All procedures were approved by the 141 

Institutional Animal Care and Use Committee at the University of Iowa. 142 

 143 

Touchscreen Apparatus 144 

For all experimental sessions, rats were placed within custom-built touchscreen chambers 145 

(Figure 1A; 36 × 41 × 36 cm). The chambers contained a computer monitor (Model 1550V, 146 

NEC, Melville, NY) mounted on one wall to present visual stimuli to the rats. A touchscreen 147 

(15-in, Elo Touch Systems, Fremont, CA) was placed in front of the computer monitor so that 148 

the rats could interact with the screen. On the wall opposite from the monitor, a food tray (6.5 × 149 

13 × 4.5 cm) delivered food pellets to the rat via a rotary pellet dispenser (Med Associates Inc., 150 

Georgia, VT, model ENV-203IR) that was controlled by an electrical board (Model RS-232, 151 

National Control Devices, Osceola, MO). A house light above the food tray was always on 152 

during experimental sessions. White noise within the room was also always on to minimize 153 

distractions. Custom MATLAB scripts controlled all experimental sessions and procedures 154 

(MathWorks, Natick, MA). Finally, a camera (model ELP-USB100W05MT-RL36) was mounted 155 



to the ceiling of the chamber and faced the computer screen so that the rats’ behavior could be 156 

observed and recorded. 157 

 158 

Pre-Training Procedures 159 

Once food restriction began, each rat was handled daily for 1 week. This reduced the stress of 160 

interacting with experimenters. Then, each rat underwent cart training, which encouraged the 161 

foraging of food pellets in an open field. Each rat was placed on the surface of a laboratory cart, 162 

and twenty 45-mg pellets were scattered on the cart’s surface. This procedure was repeated daily 163 

until the rat consumed all pellets within 15 minutes, which usually took about 7 days. After cart 164 

training, rats underwent a daily shaping procedure to learn to interact with the touchscreen 165 

(Broschard, Kim, Love, & Freeman, 2020). This procedure included three separate phases; each 166 

phase was incrementally similar to the trial sequence used during training and testing sessions. 167 

Phase I required a minimal touch requirement and was used to orient the rats to the screen. Each 168 

trial began with the presentation of a star at the center of the screen. After 15 seconds (or one 169 

touch of the screen), the star was replaced by a white box appearing on the left or right side of 170 

the screen. A food pellet was delivered if the rat touched anywhere on the screen while the white 171 

box was presented. Otherwise, the trial aborted after 45 seconds, and the trial was considered a 172 

miss. This procedure was repeated until the rat completed at least 55/60 trials within 25 minutes. 173 

In Phase II, the touch requirement was increased. Specifically, the rats were required to touch 174 

both the star stimulus and the white box to receive a food reward. Similar to Phase I, the trial 175 

phases timed out (i.e., 15 seconds for the star stimulus and 45 seconds for the white box) in the 176 

absence of a response. Sessions continued until the rat completed at least 55 trials within 30 177 

minutes. Phase III was identical to Phase II except that the trials did not time out. Sessions 178 



continued until the rat completed all 60 trials within 25 minutes. All shaping procedures required 179 

about 14 days. 180 

 181 

Surgery 182 

After shaping was complete, rats underwent stereotaxic surgery. Under isoflourane (1% - 4%) 183 

anesthesia), a Hamilton syringe (1 uL; 26 gauge) was lowered into the PL bilaterally (AP: +3.0; 184 

ML: ±0.7; DV; -3.5). Upon reaching the target site, 0.4 µL of either NMDA (20 mg/ml; 10 µL/h; 185 

Sigma-Aldrich, St. Louis, MO) or PBS was infused. After surgery, rats were placed on a heating 186 

pad until awake and mobile to prevent hypothermia. Meloxicam (1 mg/ml) was administered as 187 

analgesic both during surgery and 24 hours after surgery. Rats were allowed at least one week to 188 

recover. 189 

 190 

Behavioral Testing: An Overview 191 

After a week of recovery, rats were given multiple training and testing sessions to learn to 192 

categorize visual stimuli. Briefly, on each trial, a single stimulus appeared on the screen, and the 193 

rat decided its category membership (i.e., category ‘A’ or category ‘B) by pressing one of two 194 

report keys (Fig. 1D). Food reinforcement was delivered after correct responses to guide 195 

learning.  196 

 197 

Category Stimuli 198 

The category stimuli (239 x 239 pixels) presented to the rats contained black and white gratings 199 

(Figs. 1B-D). Across stimuli, these gratings varied along two continuous dimensions: spatial 200 

frequency and orientation. The spatial frequency of the gratings ranged from 0.2532 cycles per 201 



visual degree (cpd) to 1.2232 cpd, and the orientation of the gratings ranged from 0 radians to 202 

1.75 radians. These values were obtained from pilot experiments and are within the perceptual 203 

limits of rats (Crijns & Op de Beeck, 2019). Linear transformations of these dimensions were 204 

made so that both dimensions had a common range (i.e., 0 to 100). Specifically,  205 

Normalized frequency = !"#
$.$$&'

− 26.10, 206 

Normalized orientation = 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 ∗ 	()$
"*

. 207 

A two-dimensional stimulus space was created using these transformed stimulus dimensions 208 

(Figs. 1B-C). 209 

 210 

Category Tasks 211 

Category tasks were created by placing bivariate normal distributions on this transformed 212 

stimulus space (Fig. 1B; Category A: µX = 30, σX = 2.5, µY = 50, σY = 20; Category B: µX = 70, σX 213 

= 2.5, µY = 50, σY = 20; Broschard et al., 2019; Broschard et al., 2020; O’Donoghue, Broschard, 214 

& Wasserman, 2020). Each distribution constituted a category, and each point within a 215 

distribution represented a category stimulus. Three additional category tasks were created by 216 

rotating these distributions in 45-degree increments (Figs. 1B-C). Importantly, rotating the 217 

distributions did not affect any physical properties of the distributions (Ashby, Smith, & 218 

Rosedahl, 2019; e.g., standard deviation, mean between-category distance, etc.). However, these 219 

rotations changed how the distributions were oriented in relation to the axes of the stimulus 220 

space. 1D tasks had distributions that were perpendicular to one of the stimulus dimensions (Fig. 221 

1B). Because of this orientation, only one dimension (i.e., the perpendicular dimension) was 222 

category-relevant and had to be considered when deciding category membership. The dimension 223 

parallel to the distributions was category-irrelevant and could be ignored. Conversely, 2D tasks 224 



had distributions that were not aligned with either stimulus axis (Fig. 1C). For these tasks, both 225 

dimensions were category-relevant, and deciding category membership involved combining 226 

information from both dimensions.  227 

 228 

Category Training 229 

Rats were randomly assigned to learn one of the four category tasks (Broschard et al., 2019, 230 

2020). Rats were given 15 training sessions; each session contained 80 training trials. On each 231 

trial, a star stimulus was presented at the center of the screen (Fig. 1D; Star Phase). After one 232 

touch of the star, a category exemplar was randomly selected from the training distributions 233 

(Figs. 1B-C) and replaced the star stimulus (Cue Phase). After three touches of this exemplar, 234 

copies of the exemplar were presented on the left and right sides of the screen, acting as report 235 

keys (Choice Phase). Rats touched either report key depending on the category membership of 236 

the exemplar. The categories were mapped spatially, such that the left report key was chosen for 237 

members of category A, and the right report key was chosen for members of category B. If the 238 

correct side was chosen, a white box replaced the report key (Reward Phase). One touch of the 239 

white box delivered a food reward. If instead the incorrect side was chosen, then a correction 240 

trial was initiated. Here, the trial repeated from the Cue Phase after a 5 to 10 second time-out. 241 

Correction trials were repeated without reinforcement until the correct side was chosen. Inter-242 

trial intervals ranged from 5 to 10 seconds.  243 

 244 

Category Generalization 245 

After category training, rats were presented with five testing sessions to examine category 246 

generalization (Broschard et al., 2019, 2020). Each session contained 80 trials. The trial sequence 247 



was identical to training sessions except that correction trials were not administered after 248 

incorrect responses (and therefore all choices were reinforced). Exemplars were randomly 249 

sampled from testing distributions (Fig. 5A). Testing distributions were identical to the training 250 

distributions, except that the standard deviation along the relevant dimension (or axis for the 2D 251 

tasks) was increased (σX = 10; Broschard et al., 2019; O’Donoghue et al., 2020). With this 252 

manipulation, some exemplars overlapped with the training distributions (i.e., Trained; within 253 

two standard deviations), but some exemplars sampled from novel portions of the stimulus 254 

space. Among the novel exemplars, about half were closer to the category boundary than the 255 

training distributions (Proximal), and half were farther from the category boundary (Distal). 256 

Generalization to the novel stimuli ensures that the rats did not simply memorize single 257 

exemplars during training. 258 

 259 

Simple Discrimination 260 

After category testing, rats were trained to learn a simple discrimination task. This acted as a 261 

control task to ensure that any differences across groups were not caused by deficits in 262 

movement, motivation, perception, etc. Instead of categories of stimuli, only two images were 263 

presented during training sessions (i.e., a light box and a dark box; Fig. 6A; Kim, Castro, 264 

Wasserman, & Freeman, 2018). Both images contained a common pattern of dots to add 265 

perceptual complexity. The trial sequence was identical to categorization sessions. The white 266 

stimulus was mapped to the left report key, and the black stimulus was mapped to the right report 267 

key. Each session contained 72 training trials. Sessions continued until the rat reached a learning 268 

criterion (i.e., at least 75% accuracy for both images on two consecutive sessions). 269 

 270 



Histology 271 

After all behavioral testing, rats were perfused to verify lesion placements. Rats were given a 272 

lethal dose of euthanasia solution (sodium pentobarbital) and then perfused with ~400 mL PBS 273 

and ~400 mL of 10% formalin. Brains were stored at 4° C in a solution containing 10% formalin 274 

and 30% sucrose. A sliding microtome collected 50 µm coronal sections of the target area. Brain 275 

sections were then stained with thionin (Sigma-Aldrich, St. Louis, MO). A close investigation of 276 

the tissue was conducted under a light microscope to characterize the size of each lesion within 277 

the PL and how much it extended dorsally and ventrally. The boundary of the PL was defined 278 

according to Paxinos & Watson, 1998.  279 

 280 

Statistical Analysis 281 

Multiple dependent measures quantified performance for training and testing sessions. First, 282 

session accuracy was defined as the proportion of correct responses during the Choice phase. 283 

Second, perseverative errors were calculated and were defined as a repeated incorrect response 284 

after receiving negative feedback. Third, reaction time was calculated during the Cue phase and 285 

Choice phase to quantify the amount of time to 1) observe the stimulus and 2) make a category 286 

decision. Reaction times from incorrect trials were excluded from all analyses. Additionally, 287 

reaction times that exceeded two standard deviations of the mean were excluded from all 288 

analyses, a criterion that is commonly used to eliminate outliers (O’Donoghue et al., 2020). 289 

These outliers rarely occurred. Fourth, touch separation used the pixel location of touches during 290 

the Cue phase of correct trials to quantify choice confidence. Prior experiments demonstrated 291 

that as accuracy improves, the x-coordinate of touches during the Cue phase deviate towards the 292 

correct side in anticipation of the rats’ choice (Kim, Castro, Wasserman, & Freeman, 2018). 293 



Touch separation is calculated by comparing the x-coordinate of a touch to the average x-294 

coordinate of all three touches from that trial. Positive touch separation indicates deviation 295 

towards the correct side, and negative touch separation indicates deviation towards the incorrect 296 

side.  297 

 These dependent measures were analyzed using linear mixed effects modeling (R, 298 

version 3.4.2). Models used for training sessions included fixed effects for experimental group, 299 

training session, and a quadratic function across training sessions, as well as random effects for 300 

slope, intercept, and the quadratic function. Models for testing sessions included fixed effects for 301 

experimental group, trial type (Distal, Trained, and Proximal), and a quadratic function across 302 

trial types, as well as random effects for slope, intercept, and the quadratic function. Quadratic 303 

functions were used because they best fit the data, and higher order terms did not significantly 304 

improve these fits. Sex was added as a covariate for all models to check whether there were any 305 

significant differences between male and female rats. To find the simplest model that fit the data, 306 

we used a model simplification strategy (Crawley 2007). We started with the full model and then 307 

systematically removed random effects one at a time. This continued until the estimates were 308 

significantly different from the larger model before it. 309 

 310 

SUSTAIN Model Fitting 311 

SUSTAIN is a neural network model of human category learning and has been used in multiple 312 

contexts to map neural activity to specific cognitive processes (e.g., Love & Gureckis, 2007; 313 

Mack, Love & Preston, 2016). Here, we used SUSTAIN to further examine the role of the PL by 314 

simulating the effects of the PL lesions on category learning. We were particularly interested 315 



whether the PL serves a function similar to SUSTAIN’s attention mechanism (Love & Gureckis, 316 

2007).  317 

SUSTAIN assumes that similar training experiences cluster together in memory (Love et 318 

al., 2004). Categories are represented by one or multiple clusters; each cluster reflects a learned 319 

group of similar training experiences and is stored in a hidden layer (Fig. 7A; the cluster layer). 320 

On each learning trial, the current stimulus is compared to existing clusters, and each cluster is 321 

activated according to its similarity to the stimulus. SUSTAIN’s attention mechanism modulates 322 

the stimulus before entering the cluster layer (Fig. 7A; the feature tuning mechanism). Each 323 

stimulus dimension is multiplied by an attention weight. These weights bias the perception of the 324 

stimulus according to category-relevant information and affect how clusters are activated. 325 

Cluster activations then project to a decision layer, which makes a probabilistic decision 326 

regarding the category membership of the stimulus (Fig. 7A; decision layer).  327 

At the beginning of training, the model contains one cluster centered on the first training 328 

stimulus, and attention weights are equivalent across all stimulus dimensions. Then, feedback is 329 

provided after each trial, and SUSTAIN updates accordingly. First, category representations 330 

within the cluster layer update, such that the current trial stimulus is either integrated into an 331 

existing cluster or becomes the center of a newly recruited cluster. New clusters are created in 332 

response to stimuli that are ‘surprising.’ The decision to recruit a new cluster is initiated if the 333 

model incorrectly classifies a stimulus and the cluster activations exceed the value of a threshold 334 

parameter, indicating that the model is relatively confident in its choice. The feature tuning 335 

mechanism is also updated so that attention is shifted towards category-relevant dimensions. 336 

This is controlled by two parameters. First, a selective attention parameter determines the 337 

amount of attentional focus that can be applied in the category task. Second, an attention learning 338 



rate parameter determines how quickly this attention resource can be shifted towards relevant 339 

dimensions. 340 

 Love & Gureckis (2007) proposed a framework by which the functions of the PFC map 341 

onto elements of the SUSTAIN model. Specifically, they posit that the PFC functions as the 342 

feature tuning mechanism and shifts attention towards category-relevant information. Second, 343 

the PFC updates category representations by initiating the decision to recruit a new cluster. To 344 

test these predictions, we created three experimental manipulations that simulate the effects of 345 

the PL lesions. The first two manipulations disrupted the feature tuning mechanism to test 346 

whether the PL is critical for shifting attention to relevant dimensions. First, we lesioned the 347 

feature tuning mechanism by setting the two parameters that control the feature tuning 348 

mechanism (i.e., the selective attention parameter and the attention learning rate parameter) to 0. 349 

As a result, the model could not update its attention weights, rendering the model unable to shift 350 

attention to category-relevant dimensions. Second, we permutated the attention weights before 351 

each trial. With this manipulation, the model could update its attention weights normally; 352 

however, on any given trial, attention may be directed towards category-irrelevant information. 353 

Therefore, the model could learn to identify relevant information, but its ability to maintain 354 

selective attention to that information across trials was impaired. The third manipulation tested 355 

the prediction that the PL initiates the decision to recruit a new cluster in response to ‘surprising’ 356 



1 Perceptual recency effects can also be calculated by examining repeated responses rather than 
trial accuracy. We choose trial accuracy to simplify the measure. Additionally, because there are 
only two categories in the current design, results look similar using either method. 

stimuli. This was accomplished by increasing the cluster threshold parameter that determines 357 

when a new cluster is recruited.  358 

Using combinations of these manipulations, we generated five versions of SUSTAIN that 359 

each simulated how the PL lesions affected category learning (Fig. 7B). We also added a control 360 

model that assumed the lesions had no effect on learning. Each model was optimized to the rats’ 361 

averaged learning curves using the MATLAB function fmincon. Then, Akaike’s Information 362 

Criterion (AIC) was calculated for each optimized model to quantify its goodness-of-fit (Akaike, 363 

1974). The model with the smallest AIC value was determined as the model that best fit the 364 

behavior. The function(s) of PL can be inferred from these results. 365 

 366 

Perceptual Recency Effect 367 

With the current design, each rat completed a large number of training trials. This afforded us the 368 

ability to examine category learning on a trial-by-trial basis. Importantly, this sensitivity was 369 

leveraged to further test the prediction that the PFC updates category representations (Love & 370 

Gureckis, 2007). We examined the effect of the PL lesions on perceptual recency effects, which 371 

characterize how category performance is influenced by the identity of the most recent training 372 

exemplar (Jones, Love, & Maddox, 2006). Recency effects suggest that category decisions are 373 

biased towards recent exemplars, which would imply that the learner regularly updates category 374 

representations. Assuming representational updating is a function of the PFC, we predicted that 375 

recency effects are mediated by the PL.  376 

Recency effects often interact with the perceptual similarity between exemplars. For 377 

example, performance is facilitated if the exemplar is perceptually similar to the most recent 378 

exemplar (Jones et al., 2006). Therefore, we binned the accuracy1 of training trials according to 379 



the perceived similarity between the current exemplar (n) and the most recent exemplar (n-1; 380 

Nosofsky, 1986). Perceptual similarity between exemplars i and j was calculated as: 381 

 𝑠*+ =	𝑒,#!", 382 

where d is the psychological distance between exemplars i and j. Psychological distance was 383 

defined as,  384 

𝑑*+ =	∑ 	𝑤- ∗ 3𝑥* − 𝑥+3.
-/(   385 

where wm was SUSTAIN’s estimated attention weight for dimension m on trial n, and x was the 386 

physical value of the exemplar along dimension m. Trial effects were isolated by subtracting the 387 

binned accuracies by the average of 1,000 permutations where trial order was shuffled. 388 

Therefore, positive recency scores indicate increased accuracy due to trial order, negative scores 389 

indicate decreased accuracy due to trial order, and 0 indicates no effect of trial order. 390 

 391 

Results 392 

Histological assessment of PL lesions 393 

Representative lesions are shown in Figure 2. Each lesion was examined under a light 394 

microscope to ensure that it was contained within the PL. PL boundaries were determined 395 

according to Paxinos & Watson (1998). All lesions were centered within the PL, and the data 396 

from all rats were included in all analyses. Along the rostral/caudate axis, all lesions were 397 

contained between bregma +4.3 and +2.4. There were no significant differences in lesion size 398 

and location between the males and females. The lesions of three rats (one rat learning a 1D task 399 

and two rats learning a 2D task) extended dorsally into the cingulate cortex and ventrally into the 400 

infralimbic cortex. However, there were no differences in behavior between rats with these 401 

lesions and rats with more selective lesions.  402 



 403 

PL lesions impair category learning for 1D tasks, but not 2D tasks 404 

All rats completed 15 training sessions to learn either a 1D task or a 2D task. We used linear 405 

mixed effects models to examine accuracy, the number of correction trials, and the number of 406 

perseverative errors across category training (see Materials & Methods). The full models 407 

included fixed effects for group, training session, a quadratic function (across sessions), random 408 

effects for the intercept, slope, and the quadratic function, and a covariate for sex. For all 409 

measures, there was a significant main effect for training session (Fig. 3). Session accuracy 410 

increased across training, and the number of correction trials and perseverative errors decreased 411 

across training (Accuracy: t(27.11) = 5.20, p < .001; Correction trials: t(27.04) = 5.81, p < .001; 412 

Perseverative errors: t(27.27) = 5.12, p < .001). There were no significant differences between 413 

male and female rats (Accuracy: t(22.01) = -1.64, p = .116; Correction trials: t(19.25) = 0.67, p = 414 

.513; Perseverative errors: t(29.01) = 0.46, p = .649), suggesting that sex did not affect category 415 

learning. There were also no significant differences between controls learning the 1D tasks vs. 416 

the 2D tasks (Accuracy: t(26.55) =.05, p = .963; Correction trials: t(26.78) = 0.04, p = .971; 417 

Perseverative errors: t(27.02) = 0.46, p = .647). This replicates our previous work and suggests 418 

that rats normally learn 1D tasks and 2D at the same rate (Broschard et al., 2019).  419 

Compared to controls, rats with PL lesions were impaired in learning the 1D tasks. 420 

Specifically, accuracy was impaired, and the number of correction trials and perseverative errors 421 

were larger (Figs. 3A-F; Accuracy: t(27.40) = 2.43, p = .022; Correction trials: t(27.33) = 2.31, p 422 

= .028; Perseverative errors: t(27.54) = 2.56, p = .030). Conversely, PL lesions did not affect 423 

category learning for the 2D tasks (Accuracy: t(27.01) = 0.62, p = .541; Correction trials: 424 

t(26.94) = 0.21, p = .838; Perseverative errors: t(26.87) = 0.33, p = .742). Together, these results 425 



indicate that the PL lesions impaired category learning for the 1D tasks, but not the 2D tasks. 426 

The 1D tasks, but not the 2D tasks, involve category-irrelevant information, and therefore 427 

encourage a shift in attention to a single stimulus dimension. Therefore, our results suggest that 428 

the PL is important for shifting attention towards category-relevant dimensions and away from 429 

irrelevant dimensions (i.e., selective attention). Without the PL, attention may be divided 430 

between the relevant and irrelevant dimensions. Under this interpretation, the PL lesions did not 431 

affect learning the 2D tasks because, without the PL, rats were biased toward deploying the 432 

optimal strategy (i.e., divided attention) as both dimensions were relevant. 433 

 434 

Rats with PL lesions learning 1D tasks require more time to categorize exemplars 435 

Next, we examined the amount of time to evaluate each stimulus (Cue RT) and to execute a 436 

category decision (Choice RT) using linear mixed effects models (fixed effects: group, training 437 

session, a quadratic function (across sessions); random effects: intercept, slope, and the quadratic 438 

function; covariate: sex). There were significant main effects of training session for both Cue RT 439 

and Choice RT, such that reaction time decreased across training (Fig. 4; Cue RT: t(26.31) = 440 

3.47, p = .002; Choice RT: t(27.02) = 2.51, p = .018). There was no significant difference 441 

between male and female rats (Cue RT: t(37.89) = 0.62, p = .538; Choice RT: t(28.78) = -0.36, p 442 

= .720). For controls, Cue RT and Choice RT were not significantly different between rats 443 

learning the 1D tasks and the 2D tasks (Cue RT: t(26.96) = 2.09, p = .045; Choice RT: t(27.00) = 444 

0.26, p = .796). For rats with PL lesions, Cue RT was significantly larger than the controls for 445 

rats learning the 1D tasks (Fig. 4A-B; t(27.02) = 3.92, p < .001; Fig. 3C), but not the 2D tasks 446 

(t(26.97) = 1.25, p = .223). However, there were no significant group differences in Choice RT 447 

(Figs. 4C-D; 1D tasks: t(27.04) = 1.55, p = .133; 2D tasks: t(26.89) = 0.99, p = .329). Together, 448 



these results suggest that the rats with PL lesions learning the 1D tasks required more time to 449 

evaluate each stimulus. However, there were no significant differences in the amount of time to 450 

execute a category decision. These results are task-specific, which suggests that this impairment 451 

is a consequence of the 1D tasks having both relevant and irrelevant stimulus information. 452 

 453 

PL lesions impaired choice confidence for rats learning 1D tasks 454 

We then examined the effect of PL lesions on touch separation, a measure of choice confidence 455 

during the Cue phase (see Material and Methods). A linear mixed effects model (fixed effects: 456 

group, training session, a quadratic function across sessions; random effects: intercept, slope, the 457 

quadratic function; covariate: sex) examined touch separation for the third touch across training 458 

sessions. First, there was a main effect of training session, such that touch separation increased 459 

across sessions (Fig. 4; t(27.02) = 4.71, p < .001). There was no significant difference in touch 460 

separation between male and female rats (t(26.16) = -0.93, p = .360) as well as controls learning 461 

the 1D tasks and 2D tasks (t(26.95) = 0.30, p = .840). For rats with PL lesions, touch separation 462 

was impaired for the rats learning the 1D tasks (Fig. 4E; t(27.38) = 2.82, p = .009), but not 2D 463 

tasks (Fig. 4F; t(26.96) = .53, p = .601). These results support the role of PL in learning 1D tasks 464 

and suggests that these rats were less confident in their category decisions. 465 

 466 

PL lesions impair category generalization for 1D tasks but not 2D task 467 

After category training, each rat was presented with five testing sessions to examine category 468 

generalization. Testing distributions had identical category means as the training distributions but 469 

had increased variance along the relevant dimension (or relevant axis for the 2D tasks) to sample 470 

from novel portions of the stimulus space (Fig. 5A). We segregated the testing distributions into 471 



three trial types: stimuli that overlapped with the training distributions (Trained), novel stimuli 472 

farther from the category boundary (Distal), and novel stimuli closer to the category boundary 473 

(Proximal).  474 

Linear mixed effects models (fixed effects: group, trial type, a quadratic function; random 475 

effects: intercept, slope, and the quadratic function; covariate: sex) examined accuracy, Cue RT, 476 

Choice RT, and touch separation during testing sessions. Generally, performance was poorer for 477 

Proximal stimuli compared to Trained stimuli, suggesting that the rats perceived stimuli closer to 478 

the category boundary as more difficult (Broschard et al., 2019). Specifically, accuracy and 479 

touch separation for Proximal stimuli were significantly lower than Trained stimuli, and Choice 480 

RT for Proximal stimuli was significantly larger than Trained stimuli (accuracy: t(52) = 8.22, p < 481 

.001; touch separation: t(52) = 2.49, p = .016; Choice RT: t(52) = 2.76, p = .008). Cue RT did not 482 

differ significantly between Proximal stimuli and Trained stimuli (t(52) = 2.0, p = .057). 483 

Conversely, rats could easily generalize to the Distal stimuli, and there were no significant 484 

differences between Distal stimuli and Trained stimuli (accuracy: t(52) = 1.96, p = .055; Cue RT: 485 

t(52) = 0.94, p = .353; Choice RT: t(52) = 0.85, p = .400; touch separation: t(52) = .89, p = .377). 486 

Finally, there were no significant differences in all dependent measures between controls that 487 

learned the 1D tasks and 2D tasks (Figs. 5B-E; Accuracy: t(26) = 0.77, p = .448; Cue RT: 488 

t(31.08) = 0.73, p = .470; Choice RT: t(30.23) = 0.33, p = .747; touch separation: t(38.54) = 0.04, 489 

p = .966). 490 

PL lesions impaired accuracy and touch separation for rats that learned the 1D tasks 491 

(Figs. 5B,E; accuracy: t(26) = 2.51, p = .019; touch separation: t(38.54) = 2.95, p = .039), but not 492 

the 2D tasks (accuracy: t(26) = 0.43, p = .667; touch separation: t(38.54) = 0.41, p = .684). 493 

Furthermore, Cue RT was significantly larger for rats with PL lesions that learned the 1D tasks, 494 



but not the 2D tasks (Fig. 5C; t(31.08) = 2.61, p = .014; t(31.08) = 0.72, p = .480, respectively). 495 

PL lesions did not affect Choice RT (Fig. 5D; 1D tasks: t(30.23) = 0.27, p = .787; 2D tasks: 496 

t(30.23) = 0.97, p = .341). There were no significant interactions between trial types (all ps > 497 

.05). There also were no significant differences between male and female rats (all p > .05). 498 

Together, these results are consistent with the results from training. PL lesions impaired category 499 

generalization for rats that learned the 1D tasks, but not the rats that learned the 2D tasks. Rats 500 

with PL lesions learning the 1D tasks had lower accuracy, required more time to categorize each 501 

stimulus, and had less confidence in their category decisions. 502 

 503 

Simple Discrimination 504 

After category generalization, rats were trained to learn a control discrimination task. The trial 505 

sequence was identical to category training, except only two objects were presented (instead of 506 

categories of stimuli; Fig. 6A). This procedure was added to ensure the PL lesions did not cause 507 

general deficits that were not specific to categorization (i.e., motivational, perceptual, motor, 508 

etc.). Using a 2x2 between ANOVA, there were no significant differences in the number of 509 

sessions to reach the learning criterion across groups (Fig. 6B; F(3,25) = .37, p > .05). These 510 

results support the conclusion that the observed impairments were specific to categorization. 511 

 512 

SUSTAIN modeling: PL affects selective attention and category representations 513 

Using the neural network SUSTAIN, we created three manipulations that simulated potential 514 

functions of the PL (Love & Gureckis, 2007). Two of these manipulations disrupted SUSTAIN’s 515 

feature tuning mechanism, which learns to shift attention to category-relevant dimensions. These 516 

included 1) lesioning the feature tuning mechanism so that attention weights are static across 517 



training and 2) shuffling the attention weights before each trial so that attention was not 518 

consistently directed towards category-relevant dimensions. The third manipulation tested the 519 

prediction that PL lesions limited the ability to recruit new clusters; this was modeled by 520 

increasing a cluster recruitment threshold parameter. Five models were created using 521 

combinations of these manipulations (Fig. 7B & 7D). Each model was fit to the averaged group 522 

data (Fig. 7B & 7D). These models were compared to a control model that assumed the lesions 523 

had no effect on learning. The rats’ behavior was best explained when we shuffled the attention 524 

weights before each trial and increased the cluster recruitment threshold for the lesion groups 525 

(Fig. 7C; Model 5). These results suggest that the PL is important for maintaining attention to 526 

category-relevant dimensions as well as building category representations. All models produced 527 

a better fit than the control model that assumed the lesions had no effect on learning. 528 

We then examined the best fitting model in Figure 7D (Model 5) to ascertain how the 529 

lesions affected the cluster representations. Figure 7E shows that, for the controls, SUSTAIN 530 

recruited two clusters (one per category) to learn the 1D tasks, but multiple clusters (~3-5 per 531 

category) to learn the 2D tasks (Broschard et al., 2020). These results suggest that 1D categories 532 

are normally represented by single prototypes, whereas 2D categories are normally represented 533 

by multiple exemplars (Posner & Keele, 1968; Nosofsky, 1986, respectively). Rats with PL 534 

lesions recruited fewer clusters compared to controls to learn the 2D tasks, a direct consequence 535 

of increasing the cluster recruitment threshold. These results imply that rats with PL lesions 536 

learning the 2D tasks may have had sparser category representations compared to controls, even 537 

if performance was intact across training (Figure 7E).  538 

We then examined the feature tuning mechanism of the best-fitting model to characterize 539 

how the PL lesions affected selective attention. Figure 7F demonstrates that 1D tasks were 540 



learned by incrementally shifting attention towards the category-relevant dimension (Broschard 541 

et al., 2020). Specifically, the attention weight of the category-relevant dimension increased 542 

across training trials, whereas the attention weight to the category-irrelevant dimension 543 

decreased across training trials. Importantly, this differentiation was much slower and reached 544 

lower levels for rats with PL lesions (Fig. 7F). This finding verifies that shuffling the attention 545 

weights across trials reduced selective attention by impairing the model’s ability to maintain 546 

attention to the relevant dimension. Conversely, the 2D tasks were learned by dividing attention 547 

between stimulus dimensions (Fig. 7F; Broschard et al., 2020). The attention weights for both 548 

dimensions were equivalent across training, a pattern that was consistent for both controls and 549 

rats with PL lesions.  550 

 551 

PL lesions impair perceptual recency effects 552 

SUSTAIN was best fit to the averaged group data when it was assumed that the PL lesions 553 

reduced the ability to update category representations. Here, we tested this prediction further by 554 

examining category learning on a trial-by-trial basis. We predicted that if the PL is critical for 555 

updating representations, then the PL lesions should also impair perceptual recency effects, 556 

where the learner biases category decisions according to recent training experiences. To test this, 557 

we binned the accuracy of training trials according to the perceived similarity between the 558 

current exemplar and the most recent exemplar (see Materials and Methods). Then, we 559 

subtracted the binned accuracies from iterations where trial order was randomized. Positive 560 

recency scores indicate that accuracy was facilitated because of trial order, negative scores 561 

indicate that accuracy was impaired because of trial order, and 0 indicates that trial order had no 562 

effect on category accuracy.  563 



For controls, trial order affected category learning and was modulated by stimulus 564 

similarity (Fig. 8). One-sample t-tests were used to assess whether the perceptual recency scores 565 

were significantly different from 0. For controls learning the 1D and 2D tasks, scores were 566 

significantly larger than 0 if the current stimulus was perceptually similar to the previous 567 

stimulus (i.e., above the median similarity; 1D tasks: t(7) = 3.16, p = .016; 2D tasks: t(7) = 2.86, 568 

p = .024). Conversely, scores were significantly smaller than 0 if the current stimulus was 569 

perceptually dissimilar from the previous stimulus (i.e., below the median similarity; 1D tasks: 570 

t(7) = 2.97, p = .021; 2D tasks: t(7) = 3.01, p = .020). These results indicate that accuracy was 571 

facilitated if the current stimulus was perceptually similar to the most recent exemplar, but 572 

accuracy was impaired if the current stimulus was perceptually dissimilar from the most recent 573 

exemplar. For rats with PL lesions, none of the perceptual recency scores were significantly 574 

different from 0, indicating that trial order did not affect accuracy (Fig. 8; all p > .05). Together, 575 

these results indicate that rats normally bias their decisions according to recent training 576 

experiences, which implies that they regularly update category representations. This process is 577 

effectively absent in rats with PL lesions. This finding supports the SUSTAIN modeling and 578 

indicates that the PL is critical for updating category representations. 579 

 580 

Discussion 581 

Rats were trained to categorize stimuli containing black and white gratings according to one 582 

stimulus dimension (1D tasks) or two dimensions (2D tasks). Lesions of the PL impaired 583 

learning and generalization in rats trained on the 1D tasks. Without the PL, rats learning the 1D 584 

tasks had lower accuracy, a larger number of correction trials, and more perseverative errors 585 

compared to controls (Fig. 3); they also needed more time to categorize each stimulus (i.e., Cue 586 



RT) and showed impaired choice confidence (i.e., touch separation; Fig. 4). The PL lesions did 587 

not affect performance on the 2D tasks or the simple discrimination task; therefore, impairments 588 

were specific to the 1D tasks. 1D and 2D tasks only differed in a simple rotation of the category 589 

distributions. This rotation did not change any physical properties of the categories (Ashby, 590 

Smith, & Rosedahl, 2019; e.g., discriminability, average category distance, etc.), but it did affect 591 

how the tasks were learned by changing the number of category-relevant dimensions. 592 

COVIS posits that humans have a PFC-mediated declarative system that learns new 593 

categories by testing rules (Ashby et al., 1998; Ashby & Maddox, 2011). This system is biased 594 

towards simple rules; therefore, COVIS predicts that the PFC is critical for learning tasks that 595 

can be solved by unidimensional strategies (i.e., 1D tasks, but not 2D tasks). Using this logic, we 596 

could conclude that rats also have a PFC-mediated declarative system that is important for 597 

learning 1D tasks. However, there is little evidence that rats consistently apply category rules in 598 

the manner that humans do (Broschard et al., 2019). Rule-based learning in humans is best 599 

characterized by a step-wise learning curve, where accuracy improves rapidly in a non-linear 600 

way (Ashby & Maddox, 2011). Presumably, this jump in performance is a consequence of the 601 

participant testing hypotheses about potential rules and selecting the correct rule. Category 602 

learning in rats is generally linear and incremental, even for the 1D tasks, suggesting that rats are 603 

not testing hypotheses in the same way.  604 

Instead, we propose that rodent PL mediates lower-level mechanisms that make up the 605 

building blocks of the primate declarative system. Specifically, the rodent PL biases attention to 606 

relevant stimulus information, a mechanism important for learning 1D tasks, but not for learning 607 

2D tasks. This interpretation is supported by SUSTAIN. The neural network model best fit the 608 

PL lesion data when we shuffled the attention weights before each decision, suggesting that the 609 



PL normally maintains attention to relevant stimulus information (Fig. 7). Shuffling the attention 610 

weights did not affect performance on the 2D tasks since attention was allocated to both 611 

dimensions equally. This interpretation converges with multiple studies implicating the PL in 612 

selective attention by orienting attention to cues that predict reward (Sharpe & Killcross, 2015, 613 

2018; Tait et al., 2014). 614 

Selective attention is foundational to categorization (Nosofsky, 1986). At its core, 615 

category learning involves discriminating between relevant and irrelevant stimulus information. 616 

To illustrate this point, Rehder & Hoffman (2005) tracked eye movements while participants 617 

learned to categorize stimuli made from three binary dimensions; depending on the task, the 618 

number of category-relevant dimension(s) differed (Shepard, Hovland, & Jenkins, 1961). Eye 619 

fixations (and presumably attention) were initially distributed across all stimulus dimensions, but 620 

then became restricted to only the relevant dimensions (Rehder & Hoffman, 2005). Our results 621 

suggest that maintaining attention to a subset of stimulus dimensions is mediated by the PL, a 622 

function that becomes more critical as the number of relevant dimensions decreases. This 623 

interpretation also matches the results of Mack and colleagues (2020), who found that BOLD 624 

activity in the ventromedial PFC (vmPFC) tracked the number of relevant stimulus dimensions. 625 

They argued that the that vmPFC was critical for filtering out irrelevant stimulus information.  626 

Future experiments can investigate whether other prefrontal subregions are also necessary 627 

for learning 1D tasks. A potential target is the anterior cingulate cortex (ACC), which has also 628 

been implicated in selective attention in rats (Kim, Wasserman, Castro, & Freeman, 2016). 629 

COVIS posits that the ACC participates in the declarative system by switching attention to 630 

alternative category rules (Ashby et al., 1998). This can be tested directly by inactivating the 631 

rodent ACC before category training. One interesting prediction would be that the PL and ACC 632 



serve similar but dissociable functions in selective attention. For example, whereas our results 633 

suggest that the PL is critical for maintaining attention to relevant dimensions, the ACC may be 634 

critical for identifying dimensions that are category-relevant vs. irrelevant. In this example, the 635 

ACC would be critical for learning how to orient attention, and the PL would be critical in 636 

applying those learned attention weights. 637 

In addition to selective attention, the results from the SUSTAIN modeling suggest that 638 

the PL is also important for creating new category representations (i.e., clusters). SUSTAIN 639 

recruits new clusters in response to ‘surprising’ stimuli, where the model is confident in an 640 

ultimately incorrect decision (Love et al., 2004). In the current experiment, SUSTAIN best fit the 641 

learning data when it was assumed that the rats with PL lesions had a higher threshold to recruit 642 

new clusters (Fig. 7). Consequently, without the PL, the category representations were much 643 

sparser. This was especially critical for rats learning the 2D tasks, where normally multiple 644 

clusters are recruited for each category. The role of the PL in updating category representations 645 

was also examined by analyzing category learning on a trial-by-trial basis (Fig. 8). We found 646 

that, for controls, category decisions were directly influenced by recent exemplars. Accuracy was 647 

facilitated if the current stimulus was perceptually similar to the previous exemplar, whereas 648 

accuracy was impaired if the current stimulus was dissimilar to the previous exemplar, 649 

suggesting that rats update category decisions regularly and bias their decisions according to 650 

recent information. Importantly, rats with PL lesions showed no effects of trial order. Without 651 

the PL, rats may be less sensitive to local changes within the category, which could lead to 652 

perseveration in the event of a task switch. 653 

We predict that the role of the PL in updating representations is related to the literature 654 

that credits the PFC in the development and maintenance of schemas, which are hierarchical 655 



representations of information that help organize memories (Koscik & Tranel, 2012). Schemas 656 

extrapolate common elements from distinct episodes (Morton, Sherrill, & Preston, 2017; 657 

Pudhiyidath, Roome, Coughlin, Nguyen, & Preston, 2019) and rely on an interaction between the 658 

PFC and hippocampus (Zeithamova, Dominick, & Preston, 2012; Schlichting & Preston, 2016). 659 

We predict that the PL uses these mechanisms in our categorization tasks to update and elaborate 660 

category representations. Indeed, a growing literature suggests that the hippocampus stores 661 

category representations that are similar to the clusters described by SUSTAIN (Theves, 662 

Fernandez, & Doeller, 2020; Mack, Love, & Preston, 2016; Mack, Love, & Preston, 2018). For 663 

example, Mok & Love, 2020 was able to fit a clustering model to the neural activity of place 664 

cells and grids cells as a rat navigated an environment. This implies that updating and building 665 

category representations involves a close interaction between the PL and hippocampus. Future 666 

experiments can examine this interaction directly.  667 

Finally, it is important to note that although the PL facilitates category learning, it may 668 

not be necessary for categorization to occur. Indeed, accuracy impairments in the 1D tasks 669 

largely occurred during the initial training sessions, and rats with PL lesions were able to learn 670 

the 1D tasks after extensive training. This implies that other neural regions were able to 671 

compensate. COVIS predicts that a second learning system, the non-declarative system, takes 672 

over when the PFC-mediated declarative system cannot successfully find a category rule (Ashby 673 

et al., 1998; Ashby & Maddox, 2011). Importantly, key features of this non-declarative system 674 

were present in rats with PL lesions. For instance, the non-declarative system does not employ 675 

executive functions like selective attention. Additionally, learning in the non-declarative system 676 

is thought to be more static and habitual, relying on repetition and consistent feedback. We 677 

suspect that in the absence of the PL, a learning system synonymous to the non-declarative 678 



system of COVIS compensated. We hypothesize that the dorsolateral striatum (the tail of the 679 

caudate nucleus in primates) supports categorization in the absence of the PL, as this region is 680 

important for supporting habitual behaviors in rats (Balleine, Delgado & Hikosaka, 2007).  681 

To conclude, a general function of the PFC is to guide behaviors in an adaptive way 682 

(Miller & Cohen, 2001). In the context of category learning, we conclude that the rodent PL 683 

accomplishes this function through two mechanisms. First, the PL maintains attention to relevant 684 

stimulus information (i.e., selective attention); this prevents the incorporation of irrelevant 685 

information into category decisions. Second, the PL regularly updates category representations 686 

and biases decisions according to recent information; this allows for dense, flexible 687 

representations and primes the organism for changes in the category structure. Together, these 688 

mechanisms allow for category representations that are both flexible and adaptive.  689 
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881 
Figure 1. A, Behavioral testing was conducted in custom-built chambers. Each chamber 882 
contained a computer monitor and a touchscreen panel so that the rats could interact with the 883 
visual stimuli. A feeder delivered food pellets into a food tray to reinforce behavior. B-C, Rats 884 
were randomly assigned to learn one of four category tasks. For each task, category exemplars 885 
contained gratings that varied in their spatial frequency and orientation. Categories were created 886 
by placing normal distributions on this two-dimensional stimulus space. B, For the 1D tasks, 887 
category distributions were perpendicular to a stimulus axis. Consequently, one stimulus 888 
dimension was category-relevant (i.e., the dimension perpendicular to the distributions); the 889 
second dimension was category-irrelevant. We predicted that would rats use selective attention 890 
to learn 1D tasks by shifting attention towards the relevant dimension. B, For the 2D tasks, 891 
category distributions were not perpendicular to a stimulus axis. Therefore, both stimulus 892 
dimensions were category-relevant. C, The typical trial sequence for all training and testing 893 
sessions. Rats initiated each trial by touching the star stimulus at the center of the screen (Star 894 
phase). Then, an exemplar was randomly generated from the category distributions and placed at 895 
the center of the screen (Cue phase). The rat touched this exemplar three times, at which point 896 
copies of the exemplar were presented at the left and right sides of the screen (Choice phase). 897 
These copies acted as report keys. Members of category ‘A’ required a touch to the left report 898 
key, and members of category ‘B’ required a touch to the right report key. For correct responses, 899 
a white box appeared on the screen (Reward phase); one touch of the white box delivered a food 900 
reward. For incorrect responses, a correction trial was initiated, where the trial repeated from the 901 
Cue phase after a timeout.  902 
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 915 
Figure 2. A, A representative example of the location and spread of the PL lesions. B, A 916 
comparison of lesion size and location for the smallest lesion (light gray) and the largest lesion 917 
(dark gray) for rats learning a 1D task (left) and rats learning a 2D task (right). All lesions were 918 
centered in the PL and were contained within bregma +4.3 and +2.2. Lesions rarely extended 919 
into cingulate cortex and infralimbic cortex. 920 
 921 
 922 
 923 
 924 
 925 
 926 



 927 
Figure 3. Excitotoxic lesions of the PL impaired learning 1D tasks, but not 2D tasks. A-B, Mean 928 
session accuracy of rats learning 1D tasks (A) and 2D tasks (B) (n = 8 per group). Compared to 929 
controls, rats with PL lesions had impaired accuracy for 1D tasks, but not for 2D tasks. 930 
Impairments were greatest at the beginning of category training. C-D, Mean number of 931 
correction trials from rats learning 1D tasks (C) and 2D tasks (D). Compared to controls, rats 932 
with PL lesions learning the 1D tasks, but not the 2D tasks required more correction trials. E-F, 933 
Mean number of perseverative errors for rats learning the 1D tasks (E) and 2D tasks (F). 934 
Compared to controls, rats with PL lesions learning the 1D tasks, but not the 2D tasks made 935 
more perseverative errors, where a choice was repeated after receiving negative feedback. All 936 
error bars indicate the SEM. 937 



 938 
Figure 4. Excitotoxic lesions of the PL affected reaction time and choice anticipation during 939 
category learning. A-B, Mean time to observe and categorize each exemplar (Cue RT) for rats 940 
learning 1D tasks (A) and 2D tasks (B). Compared to controls, rats with PL lesions learning the 941 
1D tasks, but not the 2D tasks exhibited a longer Cue RT. C-D, Mean time to execute a category 942 
decision (Choice RT) for rats learning the 1D tasks (C) and 2D tasks (D). Compared to controls, 943 
PL lesions did not affect Choice RT. E-F, Touch separation used the x-coordinate of the three 944 
touches during the Cue phase to estimate choice confidence. Positive touch separation indicates 945 
horizontal movement of the rat towards the correct side, whereas negative touch separation 946 
indicates horizontal movement towards the incorrect side. Compared to controls, rats with PL 947 
lesions learning the 1D tasks (A), but not the 2D tasks (B) exhibited lower touch separation 948 
across category learning. All error bars indicate the SEM. 949 



 950 
Figure 5. The PL lesions impaired category generalization in rats trained on the 1D tasks, but not 951 
the 2D tasks. A, Each rat was given five testing sessions to examine category generalization. 952 
Testing distributions had the same category means as the training distributions, but the standard 953 
deviation along the relevant dimension was expanded to cover novel portions of the stimulus 954 
space. Each dot within the distributions represents a unique Gabor patch presented during 955 
testing. Testing distributions were split into three trial types: exemplars that overlapped with the 956 
training distributions (Trained), novel exemplars closer to the category boundary (Proximal), and 957 
novel exemplars farther from the category boundary (Distal). B, Mean accuracy across trial 958 
types. Generally, accuracy increased according to the distance from the category boundary. PL 959 
lesions impaired generalization in rats that learned the 1D tasks, but not rats that learned the 2D 960 
tasks. C, Mean Cue RT across trial types. Cue RT was larger for rats with PL lesions and had 961 
learned the 1D tasks than all other groups. There were no significant interactions across trial 962 
types. D, Mean Choice RT across trial types. Generally, Choice RT was larger for Proximal 963 
trials. The PL lesions did not affect Choice RT. E, Mean touch separation across trial types. 964 
Touch separation was reduced for rats with PL lesions that learned the 1D tasks. There were no 965 
significant interactions across trial types. All error bars indicate the SEM. 966 



 967 
Figure 6. Rats were presented training sessions to learn to discriminate a dark box from a light 968 
box. All groups reached learning criterion (75% accuracy for both stimuli) in an equal number of 969 
training sessions. All error bars indicate the SEM. 970 
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 997 
Figure 7. A, A diagram of the neural network model SUSTAIN, which contains three distinct 998 
layers: the input layer, cluster layer, and decision layer. SUSTAIN also contains a mechanism of 999 
selective attention (i.e., the feature tuning mechanism) that weights stimulus information 1000 
according to category relevance. B, Descriptions of the five SUSTAIN models that were fit to 1001 
the learning data to test the effects of the PL lesions on category learning. These models were 1002 
compared to a control model which assumed the lesions had no effect on learning. C, The best 1003 
fitting model was determined by comparing the estimated AIC values. The model that best fit the 1004 
data (Model 5) assumed that the PL maintains attention to category-relevant information and 1005 
updates category representations. All models produced a better fit than the control model that 1006 
assumed the lesions had no effect on learning (not graphed: AIC = 278). D, SUSTAIN’s 1007 
predictions using the best fitting model for rats learning the 1D (left) and 2D tasks (right). All 1008 
error bars indicate the SEM. E, Mean number of clusters recruited by SUSTAIN using the best 1009 
fitting model. Generally, SUSTAIN recruited two clusters (one per category) to learn the 1D 1010 
tasks and multiple clusters (3-4 per category) to learn the 2D tasks. For the rats with PL lesions, 1011 
the number of recruited clusters was reduced. F, The feature tuning mechanism of the best fitting 1012 
model. For rats learning the 1D tasks, the attention weight for the relevant dimension increased 1013 
across training, whereas the attention weight for the irrelevant dimension decreased across 1014 
training. This differentiation was impaired for rats with PL lesions. For rats learning the 2D 1015 
tasks, the attention weights were equivalent between dimensions and across training. This was 1016 
true for both control and lesioned rats. 1017 



 1018 
Figure 8. Perceptual recency effects. Accuracy was binned according to the perceptual similarity 1019 
between the current exemplar and the most recent exemplar. Then, these binned accuracies were 1020 
subtracted from iterations where trial order was randomized. For controls learning both task 1021 
types, accuracy was facilitated if the current stimulus had high perceptual similarity to the 1022 
previous trial (i.e., a positive recency score). Accuracy was impaired if the current stimulus had 1023 
low perceptual similarity to the previous trial (i.e., a negative recency score). These effects of 1024 
trial order were absent in rats with PL lesions. This was true for rats learning the 1D (A) and 2D 1025 
tasks (B). All error bars indicate the SEM. 1026 


