189 research outputs found

    Nonlinear modes for the Gross-Pitaevskii equation -- demonstrative computation approach

    Full text link
    A method for the study of steady-state nonlinear modes for Gross-Pitaevskii equation (GPE) is described. It is based on exact statement about coding of the steady-state solutions of GPE which vanish as x+x\to+\infty by reals. This allows to fulfill {\it demonstrative computation} of nonlinear modes of GPE i.e. the computation which allows to guarantee that {\it all} nonlinear modes within a given range of parameters have been found. The method has been applied to GPE with quadratic and double-well potential, for both, repulsive and attractive nonlinearities. The bifurcation diagrams of nonlinear modes in these cases are represented. The stability of these modes has been discussed.Comment: 21 pages, 6 figure

    Coupled oscillators with power-law interaction and their fractional dynamics analogues

    Full text link
    The one-dimensional chain of coupled oscillators with long-range power-law interaction is considered. The equation of motion in the infrared limit are mapped onto the continuum equation with the Riesz fractional derivative of order α\alpha, when 0<α<20<\alpha<2. The evolution of soliton-like and breather-like structures are obtained numerically and compared for both types of simulations: using the chain of oscillators and using the continuous medium equation with the fractional derivative.Comment: 16 pages, 5 figure

    Pattern Forming Dynamical Instabilities of Bose-Einstein Condensates: A Short Review

    Get PDF
    In this short topical review, we revisit a number of works on the pattern-forming dynamical instabilities of Bose-Einstein condensates in one- and two-dimensional settings. In particular, we illustrate the trapping conditions that allow the reduction of the three-dimensional, mean field description of the condensates (through the Gross-Pitaevskii equation) to such lower dimensional settings, as well as to lattice settings. We then go on to study the modulational instability in one dimension and the snaking/transverse instability in two dimensions as typical examples of long-wavelength perturbations that can destabilize the condensates and lead to the formation of patterns of coherent structures in them. Trains of solitons in one-dimension and vortex arrays in two-dimensions are prototypical examples of the resulting nonlinear waveforms, upon which we briefly touch at the end of this review.Comment: 28 pages, 9 figures, publishe

    Regular spatial structures in arrays of Bose-Einstein condensates induced by modulational instability

    Full text link
    We show that the phenomenon of modulational instability in arrays of Bose-Einstein condensates confined to optical lattices gives rise to coherent spatial structures of localized excitations. These excitations represent thin disks in 1D, narrow tubes in 2D, and small hollows in 3D arrays, filled in with condensed atoms of much greater density compared to surrounding array sites. Aspects of the developed pattern depend on the initial distribution function of the condensate over the optical lattice, corresponding to particular points of the Brillouin zone. The long-time behavior of the spatial structures emerging due to modulational instability is characterized by the periodic recurrence to the initial low-density state in a finite optical lattice. We propose a simple way to retain the localized spatial structures with high atomic concentration, which may be of interest for applications. Theoretical model, based on the multiple scale expansion, describes the basic features of the phenomenon. Results of numerical simulations confirm the analytical predictions.Comment: 17 pages, 13 figure
    corecore