480 research outputs found
CGC and initial state effects in Heavy Ion Collisions
A brief review of the phenomenological studies in the field of heavy ion
collisions based on the Color Glass Condensate theory and, in particular, of
those relying in the use of the BK equation including running coupling effects
is presented.Comment: 6 pages, 5 figures. Contribution to the proceedings of the Hot Quarks
2010 Conference. June 21-26, La Londe Les Maures, Franc
Initial and Final State Interaction Effects in Small-x Quark Distributions
We study the initial and final state interaction effects in the transverse
momentum dependent parton distributions in the small- saturation region. In
particular, we discuss the quark distributions in the semi-inclusive deep
inelastic scattering, Drell-Yan lepton pair production and dijet-correlation
processes in collisions. We calculate the quark distributions in the
scalar-QED model and then extend to the color glass condensate formalism in
QCD. The quark distributions are found universal between the DIS and Drell-Yan
processes. On the other hand, the quark distribution from the
channel contribution to the dijet-correlation process is not universal.
However, we find that it can be related to the quark distribution in DIS
process by a convolution with the normalized unintegrated gluon distribution in
the color glass condensate formalism in the large limit.Comment: 20 pages, 6 figure
Population traits shape the elevation effect on nonstructural carbohydrates (NSC) and lavonoids of Vaccinium myrtillus stands in Alpine tundra
Long-Range Rapidity Correlations in Heavy Ion Collisions at Strong Coupling from AdS/CFT
We use AdS/CFT correspondence to study two-particle correlations in heavy ion
collisions at strong coupling. Modeling the colliding heavy ions by shock waves
on the gravity side, we observe that at early times after the collision there
are long-range rapidity correlations present in the two-point functions for the
glueball and the energy-momentum tensor operators. We estimate rapidity
correlations at later times by assuming that the evolution of the system is
governed by ideal Bjorken hydrodynamics, and find that glueball correlations in
this state are suppressed at large rapidity intervals, suggesting that
late-time medium dynamics can not "wash out" the long-range rapidity
correlations that were formed at early times. These results may provide an
insight on the nature of the "ridge" correlations observed in heavy ion
collision experiments at RHIC and LHC, and in proton-proton collisions at LHC.Comment: 32 pages, 2 figures; v2: typos corrected, references adde
Identified high- spectra in Cu+Cu collisions at =200 GeV
We report new results on identified (anti)proton and charged pion spectra at
large transverse momenta (3<<10 GeV/c) from Cu+Cu collisions at
=200 GeV using the STAR detector at the Relativistic Heavy Ion
Collider (RHIC). This study explores the system size dependence of two novel
features observed at RHIC with heavy ions: the hadron suppression at
high- and the anomalous baryon to meson enhancement at intermediate
transverse momenta. Both phenomena could be attributed to the creation of a new
form of QCD matter. The results presented here bridge the system size gap
between the available pp and Au+Au data, and allow the detailed exploration for
the on-set of the novel features. Comparative analysis of all available 200 GeV
data indicates that the system size is a major factor determining both the
magnitude of the hadron spectra suppression at large transverse momenta and the
relative baryon to meson enhancement.Comment: Submitted to Phys. Rev. C, 9 pages, 5 figure
Inclusive pi^0, eta, and direct photon production at high transverse momentum in p+p and d+Au collisions at sqrt(s_NN) = 200 GeV
We report a measurement of high-p_T inclusive pi^0, eta, and direct photon
production in p+p and d+Au collisions at sqrt(s_NN) = 200 GeV at midrapidity (0
gamma gamma were detected in the
Barrel Electromagnetic Calorimeter of the STAR experiment at the Relativistic
Heavy Ion Collider. The eta -> gamma gamma decay was also observed and
constituted the first eta measurement by STAR. The first direct photon cross
section measurement by STAR is also presented, the signal was extracted
statistically by subtracting the pi^0, eta, and omega(782) decay background
from the inclusive photon distribution observed in the calorimeter. The
analysis is described in detail, and the results are found to be in good
agreement with earlier measurements and with next-to-leading order perturbative
QCD calculations.Comment: 28 pages, 30 figures, 6 tables, the updated version that was accepted
by Phys. Rev.
Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions
Parity-odd domains, corresponding to non-trivial topological solutions of the
QCD vacuum, might be created during relativistic heavy-ion collisions. These
domains are predicted to lead to charge separation of quarks along the orbital
momentum of the system created in non-central collisions. To study this effect,
we investigate a three particle mixed harmonics azimuthal correlator which is a
\P-even observable, but directly sensitive to the charge separation effect. We
report measurements of this observable using the STAR detector in Au+Au and
Cu+Cu collisions at =200 and 62~GeV. The results are presented
as a function of collision centrality, particle separation in rapidity, and
particle transverse momentum. A signal consistent with several of the
theoretical expectations is detected in all four data sets. We compare our
results to the predictions of existing event generators, and discuss in detail
possible contributions from other effects that are not related to parity
violation.Comment: 17 pages, 14 figures, as accepted for publication in Physical Review
C
Studies of di-jet survival and surface emission bias in Au+Au collisions via angular correlations with respect to back-to-back leading hadrons
We report first results from an analysis based on a new multi-hadron
correlation technique, exploring jet-medium interactions and di-jet surface
emission bias at RHIC. Pairs of back-to-back high transverse momentum hadrons
are used for triggers to study associated hadron distributions. In contrast
with two- and three-particle correlations with a single trigger with similar
kinematic selections, the associated hadron distribution of both trigger sides
reveals no modification in either relative pseudo-rapidity or relative
azimuthal angle from d+Au to central Au+Au collisions. We determine associated
hadron yields and spectra as well as production rates for such correlated
back-to-back triggers to gain additional insights on medium properties.Comment: By the STAR Collaboration. 6 pages, 2 figure
Relationships between population traits, nonstructural carbohydrates, and elevation in alpine stands of Vaccinium myrtillus
Premise: Despite great attention given to the relationship between plant growth and carbon balance in alpine tree species, little is known about shrubs at the treeline. We hypothesized that the pattern of main nonstructural carbohydrates (NSCs) across elevations depends on the interplay between phenotypic trait plasticity, plant\u2013plant interaction, and elevation. Methods: We studied the pattern of NSCs (i.e., glucose, fructose, sucrose, and starch) in alpine stands of Vaccinium myrtillus (above treeline) across an elevational gradient. In the same plots, we measured key growth traits (i.e., anatomical stem features) and shrub cover, evaluating putative relationships with NSCs. Results: Glucose content was positively related with altitude, but negatively related with shrub cover. Sucrose decreased at high altitude and in older populations and increased with higher percentage of vascular tissue. Starch content increased at middle and high elevations and in stands with high shrub cover. Moreover, starch content was negatively related with the number of xylem rings and the percentage of phloem tissue, but positively correlated with the percentage of xylem tissue. Conclusions: We found that the increase in carbon reserves across elevations was uncoupled from plant growth, supporting the growth limitation hypothesis, which postulates NSCs accumulate at high elevation as a consequence of low temperature. Moreover, the response of NSC content to the environmental stress caused by elevation was buffered by phenotypic plasticity of plant traits, suggesting that, under climate warming conditions, shrub expansion due to enhanced plant growth would be pronounced in old but sparse stands
An Experimental Exploration of the QCD Phase Diagram: The Search for the Critical Point and the Onset of De-confinement
The QCD phase diagram lies at the heart of what the RHIC Physics Program is
all about. While RHIC has been operating very successfully at or close to its
maximum energy for almost a decade, it has become clear that this collider can
also be operated at lower energies down to 5 GeV without extensive upgrades. An
exploration of the full region of beam energies available at the RHIC facility
is imperative. The STAR detector, due to its large uniform acceptance and
excellent particle identification capabilities, is uniquely positioned to carry
out this program in depth and detail. The first exploratory beam energy scan
(BES) run at RHIC took place in 2010 (Run 10), since several STAR upgrades,
most importantly a full barrel Time of Flight detector, are now completed which
add new capabilities important for the interesting physics at BES energies. In
this document we discuss current proposed measurements, with estimations of the
accuracy of the measurements given an assumed event count at each beam energy.Comment: 59 pages, 78 figure
- …
