2,858 research outputs found
Some genus 3 curves with many points
Using an explicit family of plane quartic curves, we prove the existence of a
genus 3 curve over any finite field of characteristic 3 whose number of
rational points stays within a fixed distance from the Hasse-Weil-Serre upper
bound. We also provide an intrinsic characterization of so-called Legendre
elliptic curves
Curves of every genus with many points, I: Abelian and toric families
Let N_q(g) denote the maximal number of F_q-rational points on any curve of
genus g over the finite field F_q. Ihara (for square q) and Serre (for general
q) proved that limsup_{g-->infinity} N_q(g)/g > 0 for any fixed q. In their
proofs they constructed curves with many points in infinitely many genera;
however, their sequences of genera are somewhat sparse. In this paper, we prove
that lim_{g-->infinity} N_q(g) = infinity. More precisely, we use abelian
covers of P^1 to prove that liminf_{g-->infinity} N_q(g)/(g/log g) > 0, and we
use curves on toric surfaces to prove that liminf_{g-->infty} N_q(g)/g^{1/3} >
0; we also show that these results are the best possible that can be proved
with these families of curves.Comment: LaTeX, 20 page
Serre's "formule de masse" in prime degree
For a local field F with finite residue field of characteristic p, we
describe completely the structure of the filtered F_p[G]-module K^*/K^*p in
characteristic 0 and $K^+/\wp(K^+) in characteristic p, where K=F(\root{p-1}\of
F^*) and G=\Gal(K|F). As an application, we give an elementary proof of Serre's
mass formula in degree p. We also determine the compositum C of all degree p
separable extensions with solvable galoisian closure over an arbitrary base
field, and show that C is K(\root p\of K^*) or K(\wp^{-1}(K)) respectively, in
the case of the local field F. Our method allows us to compute the contribution
of each character G\to\F_p^* to the degree p mass formula, and, for any given
group \Gamma, the contribution of those degree p separable extensions of F
whose galoisian closure has group \Gamma.Comment: 36 pages; most of the new material has been moved to the new Section
Affine algebraic groups with periodic components
A connected component of an affine algebraic group is called periodic if all
its elements have finite order. We give a characterization of periodic
components in terms of automorphisms with finite number of fixed points. It is
also discussed which connected groups have finite extensions with periodic
components. The results are applied to the study of the normalizer of a maximal
torus in a simple algebraic group.Comment: 20 page
The elephant mode between two rotating disks
International audienceSpectral direct numerical simulations (DNS) are carried out for a source-sink flow in an annular cavity between two co-rotating disks. When the Reynolds number based on the forced inflow is increased, a self-sustained crossflow instability of finite amplitude is observed. We show that this nonlinear global mode is made up of a front located at the upstream boundary of the absolutely unstable domain, followed by a saturated spiral mode, and that its properties are in good agreement with results of the local stability theory. This structure is characteristic of the so-called elephant mode of Pier & Huerre (J. Fluid Mech. vol. 435, 2001, p. 145). The global bifurcation is subcritical since only large-amplitude initial perturbations are found to trigger the elephant mode. Small-amplitude perturbations induce a long-lasting transient growth but lead eventually to a damped linear global mode, showing that non-parallel effects counteract the absolute instability and restabilize the flow. A similar linear global stabilization due to non-parallel effects has been found in the case of the flow above a single rotating disk. For the single-disk geometry, the existence of an elephant mode would imply, together with results of Davies & Carpenter (2003) a subcritical global instability, which has not yet been demonstrated. Although the present geometry differs from the single-disk case, the existence of a subcritical global bifurcation is now established, allowing a precise analysis of the transition scenarios. © 2008 Cambridge University Press
Nonlinear Analysis of Irregular Variables
The Fourier spectral techniques that are common in Astronomy for analyzing
periodic or multi-periodic light-curves lose their usefulness when they are
applied to unsteady light-curves. We review some of the novel techniques that
have been developed for analyzing irregular stellar light or radial velocity
variations, and we describe what useful physical and astronomical information
can be gained from their use.Comment: 31 pages, to appear as a chapter in `Nonlinear Stellar Pulsation' in
the Astrophysics and Space Science Library (ASSL), Editors: M. Takeuti & D.
Sasselo
Remarks on endomorphisms and rational points
Let X be a variety over a number field and let f: X --> X be an "interesting"
rational self-map with a fixed point q. We make some general remarks concerning
the possibility of using the behaviour of f near q to produce many rational
points on X. As an application, we give a simplified proof of the potential
density of rational points on the variety of lines of a cubic fourfold
(originally obtained by Claire Voisin and the first author in 2007).Comment: LaTeX, 22 pages. v2: some minor observations added, misprints
corrected, appendix modified
Bagchi's Theorem for families of automorphic forms
We prove a version of Bagchi's Theorem and of Voronin's Universality Theorem
for family of primitive cusp forms of weight and prime level, and discuss
under which conditions the argument will apply to general reasonable family of
automorphic -functions.Comment: 15 page
Countertraveling waves in rotating Rayleigh-Bénard convection
Linear and nonlinear counter-traveling waves in a fluid-filled annular cylinder with realistic no-slip boundary conditions uniformly heated from below and rotating about a vertical axis are investigated. When the gap of the annular cylinder is moderate, there exist two three-dimensional traveling waves driven by convective instabilities: a retrograde mode localized near the outer sidewall and a prograde mode adjacent to the inner sidewall with a different wave number, frequency and critical Rayleigh number. It is found that the retrogradely propagating mode is always more unstable and is marked by a larger azimuthal wave number. When the Rayleigh number is sufficiently large, both the counter-traveling modes can be excited and nonlinearly interacting, leading to an unusual nonlinear phenomenon in rotating Rayleigh-Bénard convection
- …