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Let Nq�g� denote the maximal number of Fq-rational points on any curve of
genus g over Fq. Ihara (for square q) and Serre (for general q) proved that
lim supg→∞Nq�g�/g > 0 for any fixed q. Here we prove limg→∞Nq�g� = ∞. More
precisely, we use abelian covers of P1 to prove lim infg→∞Nq�g�/�g/ log g� > 0,
and we use curves on toric surfaces to prove lim infg→∞Nq�g�/g1/3 > 0; we also
show that these results are the best possible that can be proved using these families
of curves.  2002 Elsevier Science (USA)
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1. INTRODUCTION

Let Fq be the field with q elements, and let C be a curve (nonsin-
gular, projective, geometrically irreducible) of genus g defined over Fq.
The Riemann hypothesis for curves over finite fields (Weil’s theorem)
implies that the number of Fq-rational points on C satisfies the inequality
#C�Fq� ≤ q + 1 + 2g

√
q. Ihara [21] showed that, when g is large com-

pared to q, this inequality can be improved significantly. In this paper we
study such improvements, seeking the best upper bound on #C�Fq� which
depends only on g and q. We let Nq�g� denote this bound; i.e., Nq�g�
is the maximum number of Fq-rational points on any curve over Fq of
genus g.

The Weil bound implies that, for q fixed and g varying, Nq�g� ≤
g�2√q� + Oq�1�. Ihara [21] observed that equality cannot hold when g is
much larger than q, since this would imply the existence of curves having
a negative number of points over Fq2 . This observation was extended by
Drinfeld and Vladut [3] to derive the bound Nq�g� ≤ g�√q − 1� + oq�g�,
or in other words (for q fixed), lim supg→∞Nq�g�/g ≤ √

q− 1.
In order to test the sharpness of the Drinfeld–Vladut bound, it is

necessary to produce curves with many points. Five essentially different
approaches have been used. Serre [26, 29] used class field towers to show
that, for any q, we have lim supg→∞Nq�g�/g ≥ γq > 0; subsequently, other
authors have used the same method to derive the same result but with
larger constants γq (see [24] and the references therein). Ihara [17–21]
used supersingular points on Shimura curves to show that, when q is a
square, one can take γq = √

q − 1—the largest constant possible, accord-
ing to the Drinfeld–Vladut result; subsequently, Manin and Vladut [22]
used supersingular points on Drinfeld modular curves to derive the same
result. (Some special cases of Ihara’s construction were rediscovered in
[31].) Garcia and Stichtenoth wrote down explicit towers of Artin–Schreier
extensions [11, 12] and (jointly with Thomas) Kummer extensions [13]
which have many points. (Interestingly, Elkies has shown that several of
the Garcia–Stichtenoth towers are examples of towers of modular [4]
or Drinfeld modular [5] curves.) Zink [32] showed that certain degener-
ate Shimura varieties are curves with many points of degree 3 over the
prime field. The fifth and most recent approach is that of Frey, Kani, and
Völklein [7], who combine rigidity methods from group theory with a care-
ful analysis of certain abelian varieties in order to produce curves over Fq
having unramified covers of arbitrarily large degree in which some Fq-point
splits completely.

The above results exhibit sequences of genera g for which Nq�g� is
“large” (relative to g). In the present paper we examine how small Nq�g�



curves of every genus 355

can be (relative to g). Our first new result is

Theorem 1.1. For fixed q, we have limg→∞Nq�g� = ∞.

The difficulty in proving this result is that we insist on finding curves
in every large genus. The methods listed above for producing curves with
many points do not enable one to do this (for example, modular curves
achieve few genera [2]). On the other hand, the simplest families of curves
which do attain every large genus—hyperelliptic, trigonal, bielliptic—are all
low-degree covers of low-genus curves, so they cannot have many points.
For instance, no curve of these three types can have more than 10 points
over F2, and in fact before the present paper it was not known whether
N2�g� > 10 for all large g.

We will give three proofs of Theorem 1.1, based on studying three partic-
ular families of curves: tame cyclic covers of P1, arbitrary abelian covers of
P1, and curves embedded in toric surfaces. In each case we prove a lower
bound on Nq�g�, and in the abelian and toric cases, we show that (up to a
universal constant factor) these are the best lower bounds on Nq�g� prov-
able with these families of curves. For each q and g, let Nab

q �g� denote the
maximum number of Fq-rational points on any genus-g curve which is an
abelian cover of P1 over Fq; let N tc

q �g� and N tor
q �g� denote the correspond-

ing quantities for tame cyclic covers of P1 over Fq and for curves which
embed in toric surfaces over Fq, respectively.

Theorem 1.2. For any fixed q, there exist constants 0 < aq < bq such
that, for every g > 1, we have aq · g/ log g < Nab

q �g� < bq · g/ log g.
Theorem 1.3. For any fixed q, there exist constants 0 < cq < dq such that,

for every g > 0, we have cq · g1/3 < N tor
q �g� < dq · g1/3.

Theorem 1.4. For any fixed q, there exist constants eq, fq > 0 such that,
for every g > fq, we have eq · g�log log g�/�log g�3 < N tc

q �g�.
These three theorems are proved in Sections 2, 3, and 4, respectively. The

upper bound in Theorem 1.2 is due to Frey, Perret, and Stichtenoth [8]. The
other inequalities are new.

Several authors have previously used abelian covers to produce curves
with many points. Serre [26, 29] proposed abelian covers of known curves as
a convenient source of curves with many points in case g is not much larger
than q, the idea being that such covers can be understood via class field
theory. Other authors have subsequently taken this approach to produce
numerous examples (cf. [14] or [23]). The hard part in our work is finding
examples with prescribed genus. The toric approach of Section 3 is new.

Theorems 1.2 and 1.3 imply that any one genus behaves in roughly the
same manner as any other, with respect to the maximum number of Fq-
rational points on curves of this genus lying in either of two special families
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of curves. In subsequent work, we have shown a similar assertion for the
family of all curves:

Theorem 1.5 [6]. For any fixed q, there exists hq > 0 such that, for every
g > 0, we have hq · g < Nq�g�.

Throughout this paper, by a curve over a field k, or simply “curve,”
we mean a complete non-singular one-dimensional variety defined over k
which is geometrically irreducible. We reserve the symbol p for the charac-
teristic of the field under consideration.

We advise the reader that the sections of this paper are logically inde-
pendent from each other, and can be read in any order.

2. ABELIAN COVERS OF P1

In this section we prove Theorem 1.2 in the following form, where Nab
q �g�

denotes the maximum number of Fq-rational points on any genus-g curve
which admits an abelian cover of P1 over Fq:

Theorem 2.1. For any fixed q, we have

inf
g>1

Nab
q �g�

g/ log g
> 0 and sup

g>1

Nab
q �g�

g/ log g
<∞�

The upper bound is due to Frey, Perret, and Stichtenoth [8]. In this
section we prove the lower bound. The specific abelian covers we use will
be fiber products of elementary abelian covers with a single degree-2 cover.

First consider elementary abelian p-covers of P1/Fq which are only ram-
ified at x = 0. (Here p denotes the characteristic of Fq.) For instance,
consider the equations

y
p
0 − y0 = x−i0� y

p
1 − y1 = x−i1� � � � � y

p
n−1 − yn−1 = x−in−1�

where i0 < i1 < · · · < in−1 is an increasing sequence of positive integers
coprime to p. It can be shown that these equations define a curve of genus

p− 1
2

(�i0 − 1� + �i1 − 1�p+ · · · + �in−1 − 1�pn−1)�
For p = 2 and any fixed n, these curves achieve every sufficiently large
genus; this is the crux of our proof of Theorem 2.1 for even q (which we give
at the end of this section). For odd p, however, the genus of such a curve is
divisible by �p− 1�/2—a problem we will solve by taking a degree-2 cover
of our curve. A more serious problem is that the genus is never congruent
to �p+ 1�/2 modp; to attain every congruence class, we allow ramification
at two points.
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Lemma 2.2. Let i0 < i1 < · · · < in−l and j0 < j1 < · · · < jn−1 be increas-
ing sequences of positive integers which are coprime to p. Then the equations

y
p
0 − y0 = x−i0�x− 1�−j0�
y
p
1 − y1 = x−i1�x− 1�−j1�

���

y
p
n−1 − yn−1 = x−in−1�x− 1�−jn−1

describe a curve C/Fq of genus

p− 1
2

(�i0 + j0� + �i1 + j1�p+ · · · + �in−1 + jn−1�pn−1)�
The map C → P1

x is Galois with Galois group �Z/pZ�n. It is unramified
away from x = 0 and x = 1; furthermore, x = ∞ splits completely in the
cover C → P1.

Proof. We use standard facts about composita of Artin–Schreier exten-
sions; cf. [15] or [10]. Since the right-hand sides of the defining equations
are linearly independent over Fp, the field L �= Fq�x� y0� � � � � yn−1� is a
Galois extension of Fq�x� with Galois group �Z/pZ�n, and the genus of L
is the sum of the genera of all the degree-p subextensions of L. The for-
mula for the genus now follows from the easy fact that if i and j are positive
integers coprime to p, and f �x� ∈ Fq�x� has degree less than i + j and is
coprime to x�x− 1�, then the curve over Fq defined by

yp − y = f �x�x−i�x− 1�−j

has genus ��p− 1�/2��i+ j�. The remaining assertions are clear.

In our application of this lemma, we will want sequences iν and jν giving
a genus on the order of npn, and moreover we require these sequences to
yield such genera in every residue class modpn. We address these issues in
the following combinatorial lemma.

Lemma 2.3. let n and d be positive integers. If p is an odd prime, then
there exist increasing sequences i0 < · · · < in−1 and j0 < · · · < jn−1 of positive
integers coprime to p such that each ik + jk < �p+ 3��k+ 1� ( for 0 ≤ k ≤
n− 1� and

∑n−1
k=0�ik + jk�pk ≡ d �modpn�.

Proof. We prove the lemma by induction on n. Throughout the proof, if
r is an integer, then rp denotes the unique integer such that 0 ≤ rp ≤ p− 1
and rp ≡ r �modp�. For n = 1, we must find positive integers i0 and j0
which are coprime to p such that d ≡ i0 + j0 �modp� and i0 + j0 < p+ 3.
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This is easily done: if dp > 1, then set i0 = dp − 1 and j0 = 1; and if dp ≤ 1,
then set i0 = dp + 1 and j0 = p− 1.

Now assume, inductively, that we have sequences i0 < · · · < in−2 and
j0 < · · · < jn−2 of positive integers coprime to p such that each ik + jk <
�p + 3��k + 1� and S �= ∑n−2

k=0�ik + jk�pk is congruent to d �modpn−1�.
We will find integers in−1 and jn−1 which are coprime to p, where in−2 <
in−1 and jn−2 < jn−1, such that in−1 + jn−1 < �p + 3�n and S + �in−1 +
jn−1�pn−1 ≡ d �modpn�. This last congruence is equivalent to in−1 + jn−1 ≡
d′ �modp�, where d′ = �d − S�p1−n. Now we let

in−1 = in−2 + b�
jn−1 = jn−2 + 1+ �d′ − 1− b− in−2 − jn−2�p�

where b ∈ �1� 2� 3� is chosen so that in−1 and jn−1 are both coprime to p.
Then the desired conditions on in−1 and jn−1 are satisfied, and we have
completed the induction.

We now prove Theorem 2.1, first for odd q and then for even q.

Proof of Theorem 2.1 for Odd q. Fix a finite field Fq of characteristic
p > 2. Let f �x� ∈ Fq�x� be a monic irreducible polynomial of even degree.
For any n > 0, consider the system of equations

y
p
0 − y0 = x−i0�x− 1�−j0�
y
p
1 − y1 = x−i1�x− 1�−j1�

���

y
p
n−1 − yn−1 = x−in−1�x− 1�−jn−1�

y2 = f �x��
where both i0 < i1 < · · · < in−1 and j0 < j1 < · · · < jn−1 are increasing
sequences of positive integers coprime to p. This is the fiber product of a
degree-pn cover φ: C → P1

x (as discussed in Lemma 2.2) with a degree-2
cover ψ from the curve y2 = f �x� to P1

x. Since the two covers have coprime
degrees, the system of equations describes a curve C̃ over Fq. Moreover, the
induced degree-2pn cover C̃ → P1

x is abelian, since it is the fiber product of
abelian covers. Write the degree of the different of ψ as 2D. Then by the
Riemann–Hurwitz formula applied to C̃ → C, the genus g̃ of C̃ is given by

g̃ = �p− 1�(�i0 + j0� + �i1 + j1�p+ · · · + �in−1 + jn−1�pn−1)+ pnD− 1�

Since f is monic and has even degree, x = ∞ splits completely under the
map C̃ → P1

x, so C̃ has at least 2pn rational points over Fq.
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Pick any g > p2 + 3p; we now describe choices of the parameters above
so that g̃ = g. Let n be the largest integer such that �p+ 3�npn < g. Our
assumption implies n ≥ 1. Lemma 2.3 yields sequences i0 < i1 < · · · < in−1
and j0 < j1 < · · · < jn−1 of positive integers coprime to p such that each
ik + jk < �p + 3��k + 1� and

∑n−1
k=0�ik + jk�pk is congruent to �g + 1�/

�p− 1� modpn. Define D by the equation

g = �p− 1�∑�ik + jk�pk + pnD− 1�

Then D is an integer, and our bound on ik + jk implies D is positive. Let
f �x� be a monic irreducible polynomial in Fq�x� the degree 2D; then the
degree of the different of the degree-2 cover from y2 = f �x� to P1

x is 2D.
Now f� ik, and jk satisfy all the conditions of the previous paragraph, and
yield a curve C̃ of genus g such that #C̃�Fq� ≥ 2pn. Our choice of n implies
that log g > n logp and pn ≥ g/�p�p+ 3��n+ 1��, so

#C̃�Fq� · log g > 2pn · n logp ≥ 2 logp
�p+ 3�p

n

�n+ 1�g ≥ logp
2p2 g�

We have shown that infg>p2+3p N
ab
q �g�/�g/ log g� is positive. To complete

the proof, we must show that Nab
q �g� > 0 for all g > 1. For this, let h�x� ∈

Fq�x� be squarefree of degree 2g + 1, and note that the curve y2 = h�x�
has genus g and has an Fq-rational point.

Proof of Theorem 2.1 for Even q. Let i0 < i1 < · · · < in−1 be an increas-
ing sequence of odd positive integers, and consider the system of equations

y20 + y0 = x−i0� y21 + y1 = x−i1� · · · � y2n−1 + yn−1 = x−in−1 �

Just as in the proof of Lemma 2.2, we see that these equations define a
curve C over F2 such that #C�F2� ≥ 2n and the genus of C is

i0 − 1
2

20 + i1 − 1
2

21 + · · · + in−1 − 1
2

2n−1�

For a fixed positive integer n, we can find sequences ik as above yielding
curves of any genus greater than n2n+1 − 5: there is a unique choice of
i0 ∈ �1� 3�� i1 ∈ �5� 7�� � � � � in−2 ∈ �4n − 7� 4n − 5� for which

∑n−2
k=0�ik −

1�2k−1 attains any prescribed integer value in the interval ��n − 3�2n + 4�
�n− 3�2n+ 2n−1 + 3�, and for any g ≥ n2n+1 − 4 there is then an odd integer
in−1 > 4n− 5 yielding a genus-g curve.

For a given nonnegative integer g, let n be the unique positive inte-
ger such that n2n+1 − 4 ≤ g < �n + 1�2n+2 − 4. Then the previous para-
graph shows that Nab

q �g� ≥ 2n, and for g > 1 this implies that Nab
q �g� >

��log 2�/4� · g/ log g.
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3. CURVES IN TORIC SURFACES

Curves in toric surfaces are those given by a single equation f �x� y� = 0,
such that the curve in P2 defined by f has a resolution of singularities of
a specific form. As we explain below, the genus and number of rational
points of such a curve are governed by the shape of the defining equation
f �x� y�—specifically, by the Newton polygon of f . Letting N tor

q �g� denote
the maximum number of Fq-rational points on any genus-g curve which
embeds in a toric surface over Fq, we will prove Theorem 1.3 in the follow-
ing form:

Theorem 3.1. For any fixed q, we have

inf
g>0

N tor
q �g�
g1/3

> 0 and sup
g>0

N tor
q �g�
g1/3

<∞�

The following result presents the curves we use to prove the lower bound.

Proposition 3.2. Let k be a field of characteristic p > 0, and let r be
a positive integer. Choose integers 0 < a0 < · · · < ar . Then the equation
f �x� y� = 0, where

f �x� y� �= 1+ y + xr+1 +
r∑
i=0

xiyp�ai+···+ar��

defines a curve over k with at least r rational points and genus

g �= −r + p
r∑
i=0

iai�(1)

Moreover, this curve has a smooth complete model in some smooth projective
toric surface over k.

Remark. The Newton polygon of a polynomial f ∈ k�x� y� is the convex
hull in R2 of the set of lattice points �i� j� for which the coefficient of xiyj

in f is nonzero. The expression for the genus (1) is the number of interior
lattice points in the Newton polygon of f .

Proposition 3.2 is an immediate consequence of the following algebro-
geometric statement.

Proposition 3.3. Let k be a field. Let f ∈ k�x� y� satisfy

(i) f , ∂f/∂x, and ∂f/∂y generate the unit ideal in k�x� y�;
(ii) f has nonzero constant term, and f is not in k�x� or k�y�;
(iii) every lattice point on the boundary of the Newton polygon of f

either is a vertex or lies on the horizontal or vertical coordinate axis.
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Let g be the number of lattice points in the interior of the Newton polygon of f ,
and let v be the number of vertices of the Newton polygon. Then f �x� y� = 0
defines a curve which has genus g and at least v − 2 rational points over
k. Moreover, the curve admits a smooth complete model in some smooth
projective toric surface over k.

The plan for the rest of this section is as follows. Given Proposition 3.3,
the lower bound of Theorem 3.1 follows by easy combinatorics, which we
do first. The upper bound uses known combinatorics of lattice polygons,
coupled with some geometry of curves in algebraic surfaces. This bit of
algebraic geometry is also what is needed to prove Proposition 3.3, and we
present this second. Last, we establish the upper bound in Theorem 3.1.

Proof that Proposition 3.3 Implies the Lower Bound of Theorem 3.1. For
any g > 0, there is a genus-g curve which has at least one Fq-rational point
and which satisfies (i)–(iii) of Proposition 3.3; for instance, let h�x� ∈ Fq�x�
be squarefree of degree 2g + 1, and take y2 + y = h�x� for even q and
y2 = h�x� for odd q. Thus, it suffices to show that, for sufficiently large
g, there exist curves in toric surfaces whose genus is bounded above by
a constant times the cube of the number of rational points. Moreover, it
suffices to consider the case where q is a prime p.

We use Proposition 3.2 (which follows at once from Proposition 3.3). We
may consider each residue class of gmodp separately. By dint of (1), we
are reduced to showing that, for r in a given residue class modp, there are
increasing nonnegative sequences �ai� with g/r3 bounded, so that the sums∑r
i=0 iai take on all sufficiently large positive integers. Consider sequences

�ai� with a0 = 0� � � � � ar−2 = r − 2 and r − 1 ≤ ar−1 ≤ 2�r − 1� < ar . Since
nonnegative linear combinations of r − 1 and r achieve all integer values
greater than r2, there are sequences of this type (for fixed r) for which∑r
i=0 iai takes on any prescribed value greater than �2r3 + 15r2�/6. This

proves the lower bound in Theorem 3.1.

Now we prove Proposition 3.3. Any f �x� y� satisfying (i)–(iii) defines a
variety on a suitable toric surface having the claimed (arithmetic) genus by a
result in [16], but it is not immediately clear that this variety is a curve (i.e.,
smooth and geometrically irreducible). So we need to show more: examina-
tion of its defining equations in coordinate charts establishes smoothness,
and then a little intersection theory eliminates the possibility of geometric
reducibility. Given the analysis we need for this, the genus computation falls
out easily; for more general results, see [16]. The reader is only assumed
to know basic facts about toric varieties, particularly about toric surfaces;
cf. [9].

Lemma 3.4. Let k be a field. Let f �x� y� ∈ k�x� y� be a nonzero poly-
nomial, and let % be the Newton polygon of f . Then the variety defined by
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f �x� y� = 0 can be compactified to a variety V in a smooth projective toric
surface Y , such that V is disjoint from the set of fixed points for the toric
action on Y . Moreover, for any smooth projective toric surface Y admitting
such a compactification V, the arithmetic genus of V is equal to the number
of lattice points in the interior of %.

Proof. A toric surface is a two-dimensional normal variety Y , equipped
with the action of the two-dimensional algebraic torus T 2 = �A1 � �0��2
and a dense equivariant embedding T 2 → Y . The combinatorial object
attached to Y is a fan, which we denote ), consisting of cones in a two-
dimensional lattice N; the dual lattice Hom�N�Z� (usually denoted M) is
identified with the lattice Z2 in which the Newton polygon sits (so x and
y can be regarded as coordinates on Y ). Cones of the fan correspond to
affine coordinate charts on Y .

Each ray (one-dimensional cone) of ) defines a family of half-planes in
Z2; namely, ρ = R+ · v defines a half-plane �α�α�v� ≥ h� for any h ∈ R. Let
us say that any half-plane in this family is associated with ρ. Consider the
variety in T 2 defined by the equation f �x� y� = 0, with closure V in Y . We
show now, by transforming f into local coordinate systems, that a complete
toric surface Y has all its fixed points disjoint from V if and only if every
supporting half-plane which meets % in an edge is associated with some ray
ρ ∈ ). Indeed, consider a two-dimensional cone ν = R+ · v + R+ · w; the
corresponding affine chart Uν has coordinate ring k�Gν�, where Gν is the
semigroup

{
α ∈ Hom�N�Z��α�v� ≥ 0 and α�w� ≥ 0

}
�

Now V is disjoint from the origin of Uν if and only if there is an element in
k�Gν�, with nonzero constant term, which is equal to f �x� y�xrys for some
integers r and s. Such an element exists if and only if some translate of %
is contained in Gν and contains the origin, i.e., if the corner point of the
intersection of the pair of supporting half-planes of % associated with v and
with w is a vertex of %.

The nonsingular toric surfaces are those with Uν � A2 for every two-
dimensional cone ν ∈ ), or equivalently, with every two-dimensional cone
generated by vectors which form a Z-basis for N . In this case, we say )
is nonsingular. A toric surface is projective if and only if it is a complete
variety, and this is the case if and only if the union of the cones in its fan
is equal to N; such a fan is called complete.

Any finite set of rays in N is contained in a nonsingular complete fan
). Consequently, given any nonzero polynomial f �x� y�, there exists a non-
singular projective toric surface Y such that the subvariety V of Y defined
by f �x� y� = 0 (as above) is disjoint from the fixed points of Y . Now we
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consider the long exact sequence of sheaf cohomology groups

H1�Y��Y � → H1�V��V � → H2�Y��Y �−V �� → H2�Y��Y ��(2)

The first and last terms in (2) vanish because they are invariant under
blowing up a rational point on a projective surface, and they vanish for
P2. So the arithmetic genus of V is equal to dimH2�Y��Y �−V ��. By Serre
duality, this equals dimH0�Y�KY �V ��, where KY is the canonical bundle
of Y . But −KY is the sum of the toric divisors (closures of one-dimensional
torus orbits) of Y , so one can identify the set of lattice points in the interior
of % with a basis for H0�Y�KY �V ��.

We continue with the notation of the lemma—toric surface Y with subva-
riety V disjoint from the fixed point set of Y—and we describe the intersec-
tion of V with any of the one-dimensional torus orbits of Y . Let ρ = R+ · v
be a ray of ), and consider the corresponding torus orbit E. Corresponding
to ρ is a toric chart Uρ, and we can identify Uρ � Spec k�t� u� u−1� so that
t = 0 defines E. Transforming f into �t� u�-coordinates and setting t = 0
yields

V ∩ E � Spec k�u� u−1�/p�u��(3)

where p�u� is the Laurent polynomial whose sequence of coefficients,
indexed by Z, is equal to the sequence of coefficients of monomials xiyj of
f , for �i� j� lying on the boundary � of the half-plane supporting %, associ-
ated with ρ (the identification of Z with the set of lattice points on � is to
be via an affine linear map, so p�u� is defined only up to multiplication by
a power of u and interchanging u and u−1�.

If we understand the degree of the Laurent polynomial p�u� to be the
maximal degree minus the minimal degree of all the monomials appearing
in p�u�, then the degree of p�u� is one less than the number of lattice
points in � ∩ %. In particular, if the � associated with ρ contains no lattice
points in % other than vertices of %, then p�u� has degree 0 or 1. Hence
the intersection V ∩E is either empty or consists of a single k-valued point,
which is a regular point of V .

Now suppose f �x� y� satisfies (i)–(iii) of Proposition 3.3. Since, by (ii), %
is contained in the first quadrant of Z2 and contains the origin, there exists a
smooth projective toric surface Y with fixed point set disjoint from V , such
that Y is obtained by starting with P2 and repeatedly blowing up points in
the complement of A2 ⊂ P2. Now, the test for V ∩ A2 to be nonsingular is
precisely condition (i). Additionally, every point of V which is not in A2 is a
regular point of V by condition (iii) and the previous paragraph. Hence V
is nonsingular. The genus assertion is Lemma 3.4, and V has at least v− 2
rational points, one from each of v − 2 intersections (3) with degp�u� = 1
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(where v is the number of vertices of the Newton polygon). It remains only
to show that V is absolutely irreducible.

We pass to the algebraic closure of k, and we suppose f = f1f2 with
neither f1 nor f2 constant. Equivalently, this means that over the alge-
braic closure, we can write V = V1 ∪ V2 nontrivially. Since V is nonsin-
gular, this must be a disjoint union. We get a contradiction, and hence a
proof of Proposition 3.3, by showing the intersection number V1 · V2 can-
not be zero. By the Riemann–Roch formula for the surface Y , we have
1
2V · V = Area�%�. Letting %i denote the Newton polygon of fi, for i = 1� 2,
we obtain 1

2V1 · V2 = 1
2 �Area�%� −Area�%1� −Area�%2�� > 0. This positive

quantity is the mixed volume of %1 and %2; cf. [9] or [16]. So V is absolutely
irreducible, and Proposition 3.3 is proved.

Proof of Upper Bound in Theorem 3.1. We use the notation of the proof
of Lemma 3.4. Fix q, and let C be a curve of genus g which embeds in a
toric surface Y over Fq. Without loss of generality, we may assume Y is
nonsingular projective, and has fixed point set (for the torus action) disjoint
from C. Since every rational point of C is either in the torus T 2 or in
one of the nontrivial intersections (3), the number of rational points on C
is at most �q − 1�2 + �q − 1�v, where v is the number of vertices of the
Newton polygon of a defining equation f �x� y� for C (in the coordinates of
some toric chart). So, it suffices to show that the minimum number g�v� of
interior lattice points in a convex lattice v-gon satisfies

g�v� ≥ N · v3(4)

whenever v ≥ v0, for appropriate positive constants N and v0.
Arnol’d [1] showed that any convex lattice v-gon has area at least

�1/8192�v3. The desired bound (4) follows by combining this, Pick’s the-
orem, and the observation that there is a g-minimal v-gon with no lattice
points on the boundary other than vertices (�25� 30�: removing the triangle
bounded by two vertices and one interior edge point of a convex lattice
v-gon yields a v-gon with as many or fewer interior lattice points and
strictly smaller area).

4. TAME CYCLIC COVERS

In this section we use cyclic, tamely ramified covers of P1 to produce
curves with many points in every genus. Let N tc

q �g� denote the maximal
number of Fq-rational points on any curve C over Fq of genus g which
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admits a tame cyclic cover C → P1 over Fq. We will show

Theorem 4.1. For any fixed q, we have

lim inf
g→∞

N tc
q �g�

g�log log g�/�log g�3 > 0�

At the end of this section, we discuss possible improvements of this result.
Our proof of Theorem 4.1 relies on the following lemma:

Lemma 4.2. Fix q and n > 1. Let �1 be the least prime not dividing q, and
let �2 < · · · < �n be primes which do not divide q�q − 1��1. If q is even, we
assume further that �i ≡ 7 �mod 8� for some i. Let L = ∏n

i=1 6i. Then, for any
g such that

g > 1− L+ L

2

n∑
i=2

��i − 1�2�(5)

there is a curve C/Fq of genus g and a tame cyclic cover C → P1 (over Fq)
of degree L in which some Fq-rational point of P1 splits completely.

One can obtain lim infg→∞N tc
q �g��log g�4/�g log log g� > 0 by taking

�2� � � � � �n to be the n − 1 smallest primes which do not divide q�q − 1��1.
A slight modification to this choice of primes allows us to save a factor of
log g and thereby prove Theorem 4.1.

Proof that Lemma 4.2 Implies Theorem 4.1. Fix q, and let �1 be the least
prime not dividing q. For any g ≥ 0, define xg to be the least integer such
that

g − 1 ≤ �1
2
�




∏
�≤xg

� �q�q−1��1
� prime

�




·



−2 + ∑

�≤xg
� �q�q−1��1
� prime

�� − 1�2



·(6)

Note that the right-hand side might be only slightly larger than the left, or
it might be larger by a factor of as much as (slightly more than) xg. We will
modify the set of primes under consideration in order to find an analogous
product which is only slightly smaller than g − 1; we do this by replacing
two (suitably chosen) primes p1 and p2 by a third prime p3.

We now define p1, p2, and p3; each definition makes sense for g
sufficiently large. Let p1 be the smallest prime whose removal from the
right-hand side of (6) would reverse the inequality; that is, p1 is the least
prime such that p1 � q�q− 1��1 and

g − 1 >
�1
2p1

·
(∏

�

�

)
·
(
−2 − �p1 − 1�2 +∑

�

�� − 1�2
)
�
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(Here, and in the remainder of this proof, any sum or product indexed
by � is understood to be taken over all primes � such that � ≤ xg and
� � q�q − 1��1.) Let p2 be the largest prime such that p2 ≤ xg and p2 �
q�q− 1��1p1. Let p3 be the largest prime such that

g − 1 >
�1p3

2p1p2
·
(∏
6

�

)
(7)

·
(
− 2 − �p1 − 1�2 − �p2 − 1�2 + �p3 − 1�2 +∑

�

�� − 1�2
)
�

We apply Lemma 4.2 to the set of primes

��1� � � � � �n� �= �� ≤ xg� � � q�q− 1�p1p2� � prime� ∪ �p3� ∪ ��1��
[The hypotheses of Lemma 4.2 are satisfied when g is sufficiently large,
since then p3 > max�q� �1� and also there will be some i for which
�i ≡ 7 �mod8�.] It follows that N tc

q �g� ≥ ∏n
i=1 �i = �∏� �� · �1p3/�p1p2�. It

remains only to determine the asymptotics when g→ ∞.
We can rewrite (6) as

log�g − 1� ≤ log��1/2� +
(∑

�

log �
)
+ log

(
−2 +∑

�

�� − 1�2
)
�(8)

The Prime Number Theorem implies that the right-hand side of (8) is
asymptotic to xg as xg → ∞, so xg ∼ log g. Note that

∑
� �� − 1�2 is asymp-

totic to x3g/�3 log xg�; this is much larger than p1, p2, and p3, since p1,
p2 ≤ xg and (for xg large) p3 < 5qxg. Since the left- and right-hand sides
of (7) are asymptotic to each other as xg → ∞, it follows that

N tc
q �g� ≥

�1p3

p1p2
·
(∏

�

�

)
∼ 2g
x3g/�3 log xg�

∼ 6g�log log g�
�log g�3 �

This completes the proof.

Our proof of Lemma 4.2 uses the following existence result:

Lemma 4.3. Let P1� � � � � Pn�∞ be distinct places on P1/Fq, with degrees
d1� � � � � dn� 1. Let �1� � � � � �n be positive integers such that qdi ≡ 1 �mod �i�q−
1�� for each i. There exists a tame abelian cover φ� C → P1 (over Fq) of
degree L �= ∏n

i=1 �i such that ∞ splits completely in C and the genus g of C
satisfies

2g − 2 = −2L+ L
n∑
i=1

�i − 1
�i

di�(9)

Moreover, if the �i are pairwise coprime, then φ can be chosen to be cyclic.
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Proof of Lemma 4.3. Let φ̂: Ĉ → P1 be the maximal tamely ramified
abelian cover of P1/Fq which is unramified outside �P1� � � � � Pn� and in
which ∞ splits completely. By Class Field Theory for P1, the Galois group
Ĝ of φ̂ fits in a short exact sequence

1 −→ Fx
q

)−→
n∏
i=1

Fx
qdi

−→ Ĝ −→ 1�

where ) is the diagonal embedding into the product. Moreover, the inertia
group over the place Pi is the image of Fx

qdi
in Ĝ.

Since �i divides �qdi − 1�/�q− 1�, the group G �= ∏n
i=1 Z/�iZ is a quotient

of Ĝ; let φ: C → P1 be the corresponding cover. Then φ is a tame abelian
cover with Galois group G in which ∞ splits completely and in which all
places outside �P1� � � � � Pn� are unramified. Moreover, the inertia group
over the place Pi is Z/�iZ. Hence the genus g of C satisfies (9).

Finally, if the �i are pairwise coprime, then G ∼= Z/LZ is cyclic.

Proof of Lemma 4.2. Assume q is odd, so �1 = 2. Let s1� � � � � sn be pos-
itive integers which will be specified later. Put r1 = 2 and ri = �i − 1 for
i > 1; set di = risi for all i. Note that qdi ≡ 1 �mod �i�q− 1�� for all i.

An easy count shows that, for any d > 0, there are at least d finite places
on P1 of degree d; since di ≥ i, it follows that we can choose distinct finite
places P1� � � � � Pn on P1 with degrees di� � � � � dn. Lemma 4.3 yields a tame
cyclic cover C → P1 (over Fq) of degree L �= ∏n

i=1 �i such that some Fq-
rational point of P1 splits completely in C and the genus g̃ of C satisfies

2g̃ − 2 = −2L+ L
n∑
i=1

�i − 1
�i

di�

We must show that, for any g satisfying (5), we can choose the si so that
g̃ = g. Pick any g satisfying (5). Rewrite the expression for g̃ as

g̃ − 1+ L = L

2
s1 +

n∑
i=2

L

2�i
��i − 1�2si�(10)

Note that, for i > 1, we have g̃− 1 ≡ siL/�2�i� �mod �i�. For each i > 1, let
si be the unique integer such that 1 ≤ si ≤ �i and g− 1 ≡ siL/�2�i� �mod �i�.
Then g− 1 ≡ g̃− 1 �modL/2�, so (10) implies there is a unique integer s1
for which g̃ = g. It remains to show s1 > 0; this follows from (5), since

g − 1+ L > L

2

n∑
i=2

��i − 1�2

≥
n∑
i=2

L

2�i
��i − 1�2si = g̃ − 1+ L− L

2
s1�
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Finally, we indicate how the argument must be modified to handle the
case of even q. It suffices to prove the result for q = 2. In this case, let i0
satisfy 1 < i0 ≤ n and �i0 ≡ 7 �mod8�. Define ri as above for i �= i0, and let
ri0 = ��i0 − 1�/2. As above, there is a tame cyclic cover C → P1 (over F2)
of degree L �= ∏n

i=1 �i such that some F2-rational point splits completely in
C and the genus g̃ of C satisfies (10). It remains to choose the si so that
g̃ = g. For i �∈ �1� i0�, choose si as above; for i = i0, let si satisfy 1 ≤ si ≤ 2�i
and g − 1 + L ≡ si�L/�i����i − 1�/2�2 �mod2�i�. Then (5) implies there is
a unique positive integer s1 such that g̃ = g, which completes the proof of
Lemma 4.2, and thus the proof of Theorem 4.1.

Remark. Theorem 4.1 implies that N tc
q �g� > Cq · g�log log g�/�log g�3

for g sufficiently large, where Cq is a positive constant depending only on
q. We do not know whether this result can be improved. In the opposite
direction, we now determine the qualitatively best possible upper bound on
N tc
q �g�. It was shown in [8] that N tc

q �g� < Dq · g/ log g for g > 1, where Dq
is a positive constant depending only on q. The following result shows that
this upper bound is best possible, by exhibiting infinitely many g (for each
q) such that N tc

q �g� > g/ log g.

Proposition 4.4. For any fixed q, there are infinitely many g for which we
have N tc

q �g� > �2 log q�g/ log g.

Proof. Fix q. For any e ≥ 4, put d = �qe − 1�/�q − 1� and let P�∞ be
places of P1 of degrees e and 1. Let C → P1 be the maximal tame abelian
cover in which all places besides P are unramified and in which ∞ splits
completely. Then C → P1 is a cyclic cover of degree d in which P is totally
ramified. Moreover, since ∞ splits completely, the cover C → P1 is defined
over Fq and #C�Fq� ≥ d. The genus of C is g = �d − 1��e/2 − 1�. Finally,

g

d
<
e− 1
2

<
log�d − 1�
2 log q

≤ log g
2 log q

�

so d > �2 log q�g/ log g and thus the proof is complete.
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