4 research outputs found
Recommended from our members
Summary of second annual MCBK public meeting: Mobilizing Computable Biomedical Knowledge—A movement to accelerate translation of knowledge into action
The volume of biomedical knowledge is growing exponentially and much of this knowledge is represented in computer executable formats, such as models, algorithms and programmatic code. There is a growing need to apply this knowledge to improve health in Learning Health Systems, health delivery organizations, and other settings. However, most organizations do not yet have the infrastructure required to consume and apply computable knowledge, and national policies and standards adoption are not sufficient to ensure that it is discoverable and used safely and fairly, nor is there widespread experience in the process of knowledge implementation as clinical decision support. The Mobilizing Computable Biomedical Knowledge (MCBK) community formed in 2016 to address these needs. This report summarizes the main outputs of the Second Annual MCBK public meeting, which was held at the National Institutes of Health on July 18‐19, 2019 and brought together over 150 participants from various domains to frame and address important dimensions for mobilizing CBK.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154970/1/lrh2-sup-0001-supinfo.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154970/2/lrh210222.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154970/3/lrh210222_am.pd
Effect of pulsed electric field on the germination of barley seeds
This study explores metabolic responses of germinating barley seeds upon the application of pulsed electric fields (PEF). Malting barley seeds were steeped in aerated water for 24 h and PEF-treated at varying voltages (0 (control), 110, 160, 240, 320, 400 and 480 V). The seeds were then allowed to finish germination in saturated air. It is shown that exposure of germinating barley to PEF affects radicle emergence without significantly affecting the seeds’ gross metabolic activity, as quantified by isothermal calorimetry. An exploration of protein 2-DE profiles of both the embryo and the starchy endosperm showed that, at the studied time scale, no significant changes were found in proteins present at concentrations higher than the detection limit. However, western blotting demonstrated that α-amylase concentration decreases in the PEF-treated seeds.This study was supported by grants from the Portuguese Foundation of Science (FCT, Portugal) and The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, FORMAS