47 research outputs found

    Modélisation de la dynamique de spin dans l'AGS basée sur une méthode de résolution pas-à-pas du mouvement

    Get PDF
    The AGS provides a polarized proton beam to RHIC. The beam is accelerated in the AGS from GÎł = 4.5 to GÎł = 45.5 and the polarization transmission is critical to the RHIC spin program. In the recent years, various systems were implemented to improve the AGS polarization transmission. These upgrades include the double partial snakes configuration and the tune jumps system. However, 100 % polarization transmission through the AGS acceleration cycle is not yet reached. The current efficiency of the polarization transmission is estimated to be around 85 % in typical running conditions. Understanding the sources of depolarization in the AGS is critical to improve the AGS polarized proton performances. The complexity of beam and spin dynamics, which is in part due to the specialized Siberian snake magnets, drove a strong interest for original methods of simulations. For that, the Zgoubi code, capable of direct particle and spin tracking through field maps, was here used to model the AGS. A model of the AGS using the Zgoubi code was developed and interfaced with the current system through a simple command: the AgsFromSnapRampCmd. Interfacing with the machine control system allows for fast modelization using actual machine parameters. Those developments allowed the model to realistically reproduce the optics of the AGS along the acceleration ramp. Additional developments on the Zgoubi code, as well as on post-processing and pre-processing tools, granted long term multiturn beam tracking capabilities: the tracking of realistic beams along the complete AGS acceleration cycle. Beam multiturn tracking simulations in the AGS, using realistic beam and machine parameters, provided a unique insight into the mechanisms behind the evolution of the beam emittance and polarization during the acceleration cycle. Post-processing softwares were developed to allow the representation of the relevant quantities from the Zgoubi simulations data. The Zgoubi simulations proved particularly useful to better understand the polarization losses through horizontal intrinsic spin resonances The Zgoubi model as well as the tools developed were also used for some direct applications. For instance, some beam experiment simulations allowed an accurate estimation of the expected polarization gains from machine changes. In particular, the simulations that involved involved the tune jumps system provided an accurate estimation of polarization gains and the optimum settings that would improve the performance of the AGS.L'AGS fournit un faisceau de proton polarisĂ© Ă  RHIC. Le faisceau est accĂ©lĂ©rĂ© dans l'AGS de GÎł = 4.5 Ă  GÎł = 45.5 et la transmission de la polarisation est critique pour le programme de spin de RHIC. Au cours des derniĂšres annĂ©es, divers systĂšmes ont Ă©tĂ© mis en Ɠuvre pour amĂ©liorer la transmission de la polarisation dans l'AGS. Ces amĂ©liorations consistent essentiellement en l'introduction de deux serpents Siberien partiels et du system de saut de nombre d'onde. Cependant, la transmission de la polarisation n'atteint pas encore 100 % durant le cycle d'accĂ©lĂ©ration de l'AGS. L'efficacitĂ© actelle de la transmission de la polarisation est estimĂ©e Ă  environ 85 % dans les conditions de fonctionnement typiques. Comprendre les sources de dĂ©polarisation dans l'AGS est essentiel pour amĂ©liorer les performances en protons polarisĂ©s de la machine. La dynamique complexe de faisceau et de spin, notamment en prĂ©sence des aimaint spĂ©cialisĂ©s appelĂ© serpent SibĂ©riens, justifient le fort intĂ©rÃa t pour des mĂ©thodes de simulation originales. Le code Zgoubi, capable de rĂ©soudre l'Ă©quation du mouvement et de l'Ă©volution du spin directement Ă  partir d'une carte de champs, est utilisĂ© pour modĂ©liser l'AGS. Un modĂšle de l'AGS utilisant le code Zgoubi a pout cette reaison Ă©tĂ© dĂ©veloppĂ© et interfacĂ© avec le systĂšme actuel par une simple commande: l'AgsFromSnapRampCmd. L'interfa ̧age avec le systĂšme de contrĂŽle de la machine permet la modĂ©lisation rapide en utilisant les paramĂštres de rĂ©els la machine. Ces dĂ©veloppements ont permis de reproduire fidĂšlement l'optique de l'AGS le long du cycle d'accĂ©leration. Des dĂ©veloppements supplĂ©mentaires sur le code Zgoubi, ainsi que sur des outils de post-traitement et de prĂ©-traitement, ont fourni au code la possibilitĂ© de suivre les faisceaux sur de nombreux tours, ce qui s'avĂšre ĂȘtre fondamental pour une reprĂ©sentation realiste du cycle d'accĂ©lĂ©ration complet de la machine. Des simulations de faisceaux sur de nombreux tours dans l'AGS, en utilisant des conditions rĂ©alistes de faisceau et de machine, ont fourni une unique vision des les mĂ©canismes sous-jacents de l'Ă©volution de l'Ă©mittance et de la polarisation du faisceau au cours du cycle d'accĂ©lĂ©ration. Des programmes de post-traitement ont Ă©tĂ© dĂ©veloppĂ©s pour permettre la reprĂ©sentation des quantitĂ©s pertinentes des donnĂ©es simulĂ©es par Zgoubi.Les simulations se sont avĂ©rĂ©es particuliĂšrement utiles pour mieux comprendre les pertes de polarisation Ă  travers rĂ©sonances horizontales intrinsĂšques de spin. Le modĂšle Zgoubi ainsi que les outils dĂ©veloppĂ©s ont Ă©galement Ă©tĂ© utilisĂ©es pour certaines applications directes. Par exemple, les simulations d'expĂ©riences de faisceau ont permis l'estimation prĂ©cise des gains de polarisation attendus en fonction des changements apportĂ©s. En particulier, des simulations d'expĂ©riences impliquant le systĂšme de saut des nombres d'onde ont fournis des estimations prĂ©cises de la polarisation gagnĂ© et permis le choix des conditions optimales de la machine

    Study of Coil Configuration and Local Optics Effects for the GaToroid Ion Gantry Design

    Get PDF
    GaToroid, a novel configuration for hadron therapy gantry, is based on superconducting coils that gen- erate a toroidal magnetic field to deliver the beam onto the patient. Designing the complex GaToroid coils requires careful consideration of the local beam optical effects. We present a Python-based tool for charged particle transport in complex electromagnetic fields. The code implements fast tracking in arbitrary three-dimensional field maps, and it is not limited to specific or regular reference trajectories, as is generally the case in accelerator physics. The tool was used to characterise the beam behaviour inside the GaToroid system. It automatically determines the reference trajectories in the symmetry plane and analyses three-dimensional beam dynamics around these trajectories. Beam optical parameters in the field region were compared for various magnetic configurations of GaToroid. This paper introduces the new tracker and shows the benchmarking results. Furthermore, first- order beam optics studies for different arrangements demonstrate the main code features and serve for the design optimisation

    Retrospective French nationwide survey of childhood aggressive vascular anomalies of bone, 1988-2009

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To document the epidemiological, clinical, histological and radiological characteristics of aggressive vascular abnormalities of bone in children.</p> <p>Study design</p> <p>Correspondents of the French Society of Childhood Malignancies were asked to notify all cases of aggressive vascular abnormalities of bone diagnosed between January 1988 and September 2009.</p> <p>Results</p> <p>21 cases were identified; 62% of the patients were boys. No familial cases were observed, and the disease appeared to be sporadic. Mean age at diagnosis was 8.0 years [0.8-16.9 years]. Median follow-up was 3 years [0.3-17 years]. The main presenting signs were bone fracture (n = 4) and respiratory distress (n = 7), but more indolent onset was observed in 8 cases. Lung involvement, with lymphangiectasies and pleural effusion, was the most frequent form of extraosseous involvement (10/21). Bisphosphonates, alpha interferon and radiotherapy were used as potentially curative treatments. High-dose radiotherapy appeared to be effective on pleural effusion but caused major late sequelae, whereas antiangiogenic drugs like alpha interferon and zoledrenate have had a limited impact on the course of pulmonary complications. The impact of bisphosphonates and alpha interferon on bone lesions was also difficult to assess, owing to insufficient follow-up in most cases, but it was occasionally positive. Six deaths were observed and the overall 10-year mortality rate was about 30%. The prognosis depended mainly on pulmonary and spinal complications.</p> <p>Conclusion</p> <p>Aggressive vascular abnormalities of bone are extremely rare in childhood but are lifethreatening. The impact of anti-angiogenic drugs on pulmonary complications seems to be limited, but they may improve bone lesions.</p

    Modélisation de la dynamique de spin dans l'AGS basée sur une méthode de résolution pas-à-pas du mouvement

    No full text
    The AGS provides a polarized proton beam to RHIC. The beam is accelerated in the AGS from GÎł = 4.5 to GÎł = 45.5 and the polarization transmission is critical to the RHIC spin program. In the recent years, various systems were implemented to improve the AGS polarization transmission. These upgrades include the double partial snakes configuration and the tune jumps system. However, 100 % polarization transmission through the AGS acceleration cycle is not yet reached. The current efficiency of the polarization transmission is estimated to be around 85 % in typical running conditions. Understanding the sources of depolarization in the AGS is critical to improve the AGS polarized proton performances. The complexity of beam and spin dynamics, which is in part due to the specialized Siberian snake magnets, drove a strong interest for original methods of simulations. For that, the Zgoubi code, capable of direct particle and spin tracking through field maps, was here used to model the AGS. A model of the AGS using the Zgoubi code was developed and interfaced with the current system through a simple command: the AgsFromSnapRampCmd. Interfacing with the machine control system allows for fast modelization using actual machine parameters. Those developments allowed the model to realistically reproduce the optics of the AGS along the acceleration ramp. Additional developments on the Zgoubi code, as well as on post-processing and pre-processing tools, granted long term multiturn beam tracking capabilities: the tracking of realistic beams along the complete AGS acceleration cycle. Beam multiturn tracking simulations in the AGS, using realistic beam and machine parameters, provided a unique insight into the mechanisms behind the evolution of the beam emittance and polarization during the acceleration cycle. Post-processing softwares were developed to allow the representation of the relevant quantities from the Zgoubi simulations data. The Zgoubi simulations proved particularly useful to better understand the polarization losses through horizontal intrinsic spin resonances The Zgoubi model as well as the tools developed were also used for some direct applications. For instance, some beam experiment simulations allowed an accurate estimation of the expected polarization gains from machine changes. In particular, the simulations that involved involved the tune jumps system provided an accurate estimation of polarization gains and the optimum settings that would improve the performance of the AGS.L'AGS fournit un faisceau de proton polarisĂ© Ă  RHIC. Le faisceau est accĂ©lĂ©rĂ© dans l'AGS de GÎł = 4.5 Ă  GÎł = 45.5 et la transmission de la polarisation est critique pour le programme de spin de RHIC. Au cours des derniĂšres annĂ©es, divers systĂšmes ont Ă©tĂ© mis en Ɠuvre pour amĂ©liorer la transmission de la polarisation dans l'AGS. Ces amĂ©liorations consistent essentiellement en l'introduction de deux serpents Siberien partiels et du system de saut de nombre d'onde. Cependant, la transmission de la polarisation n'atteint pas encore 100 % durant le cycle d'accĂ©lĂ©ration de l'AGS. L'efficacitĂ© actelle de la transmission de la polarisation est estimĂ©e Ă  environ 85 % dans les conditions de fonctionnement typiques. Comprendre les sources de dĂ©polarisation dans l'AGS est essentiel pour amĂ©liorer les performances en protons polarisĂ©s de la machine. La dynamique complexe de faisceau et de spin, notamment en prĂ©sence des aimaint spĂ©cialisĂ©s appelĂ© serpent SibĂ©riens, justifient le fort intĂ©rÃa t pour des mĂ©thodes de simulation originales. Le code Zgoubi, capable de rĂ©soudre l'Ă©quation du mouvement et de l'Ă©volution du spin directement Ă  partir d'une carte de champs, est utilisĂ© pour modĂ©liser l'AGS. Un modĂšle de l'AGS utilisant le code Zgoubi a pout cette reaison Ă©tĂ© dĂ©veloppĂ© et interfacĂ© avec le systĂšme actuel par une simple commande: l'AgsFromSnapRampCmd. L'interfa ̧age avec le systĂšme de contrĂŽle de la machine permet la modĂ©lisation rapide en utilisant les paramĂštres de rĂ©els la machine. Ces dĂ©veloppements ont permis de reproduire fidĂšlement l'optique de l'AGS le long du cycle d'accĂ©leration. Des dĂ©veloppements supplĂ©mentaires sur le code Zgoubi, ainsi que sur des outils de post-traitement et de prĂ©-traitement, ont fourni au code la possibilitĂ© de suivre les faisceaux sur de nombreux tours, ce qui s'avĂšre ĂȘtre fondamental pour une reprĂ©sentation realiste du cycle d'accĂ©lĂ©ration complet de la machine. Des simulations de faisceaux sur de nombreux tours dans l'AGS, en utilisant des conditions rĂ©alistes de faisceau et de machine, ont fourni une unique vision des les mĂ©canismes sous-jacents de l'Ă©volution de l'Ă©mittance et de la polarisation du faisceau au cours du cycle d'accĂ©lĂ©ration. Des programmes de post-traitement ont Ă©tĂ© dĂ©veloppĂ©s pour permettre la reprĂ©sentation des quantitĂ©s pertinentes des donnĂ©es simulĂ©es par Zgoubi.Les simulations se sont avĂ©rĂ©es particuliĂšrement utiles pour mieux comprendre les pertes de polarisation Ă  travers rĂ©sonances horizontales intrinsĂšques de spin. Le modĂšle Zgoubi ainsi que les outils dĂ©veloppĂ©s ont Ă©galement Ă©tĂ© utilisĂ©es pour certaines applications directes. Par exemple, les simulations d'expĂ©riences de faisceau ont permis l'estimation prĂ©cise des gains de polarisation attendus en fonction des changements apportĂ©s. En particulier, des simulations d'expĂ©riences impliquant le systĂšme de saut des nombres d'onde ont fournis des estimations prĂ©cises de la polarisation gagnĂ© et permis le choix des conditions optimales de la machine

    107th Plenary ECFA meeting - ZOOM

    No full text

    Spin dynamics modeling in AGS based on a stepwise ray-tracing method.

    No full text
    L'AGS fournit un faisceau de proton polarisĂ© Ă  RHIC. Le faisceau est accĂ©lĂ©rĂ© dans l'AGS de GÎł = 4.5 Ă  GÎł = 45.5 et la transmission de la polarisation est critique pour le programme de spin de RHIC. Au cours des derniĂšres annĂ©es, divers systĂšmes ont Ă©tĂ© mis en Ɠuvre pour amĂ©liorer la transmission de la polarisation dans l'AGS. Ces amĂ©liorations consistent essentiellement en l'introduction de deux serpents Siberien partiels et du system de saut de nombre d'onde. Cependant, la transmission de la polarisation n'atteint pas encore 100 % durant le cycle d'accĂ©lĂ©ration de l'AGS. L'efficacitĂ© actelle de la transmission de la polarisation est estimĂ©e Ă  environ 85 % dans les conditions de fonctionnement typiques. Comprendre les sources de dĂ©polarisation dans l'AGS est essentiel pour amĂ©liorer les performances en protons polarisĂ©s de la machine. La dynamique complexe de faisceau et de spin, notamment en prĂ©sence des aimaint spĂ©cialisĂ©s appelĂ© serpent SibĂ©riens, justifient le fort intĂ©rÃa t pour des mĂ©thodes de simulation originales. Le code Zgoubi, capable de rĂ©soudre l'Ă©quation du mouvement et de l'Ă©volution du spin directement Ă  partir d'une carte de champs, est utilisĂ© pour modĂ©liser l'AGS. Un modĂšle de l'AGS utilisant le code Zgoubi a pout cette reaison Ă©tĂ© dĂ©veloppĂ© et interfacĂ© avec le systĂšme actuel par une simple commande: l'AgsFromSnapRampCmd. L'interfa ̧age avec le systĂšme de contrĂŽle de la machine permet la modĂ©lisation rapide en utilisant les paramĂštres de rĂ©els la machine. Ces dĂ©veloppements ont permis de reproduire fidĂšlement l'optique de l'AGS le long du cycle d'accĂ©leration. Des dĂ©veloppements supplĂ©mentaires sur le code Zgoubi, ainsi que sur des outils de post-traitement et de prĂ©-traitement, ont fourni au code la possibilitĂ© de suivre les faisceaux sur de nombreux tours, ce qui s'avĂšre ĂȘtre fondamental pour une reprĂ©sentation realiste du cycle d'accĂ©lĂ©ration complet de la machine. Des simulations de faisceaux sur de nombreux tours dans l'AGS, en utilisant des conditions rĂ©alistes de faisceau et de machine, ont fourni une unique vision des les mĂ©canismes sous-jacents de l'Ă©volution de l'Ă©mittance et de la polarisation du faisceau au cours du cycle d'accĂ©lĂ©ration. Des programmes de post-traitement ont Ă©tĂ© dĂ©veloppĂ©s pour permettre la reprĂ©sentation des quantitĂ©s pertinentes des donnĂ©es simulĂ©es par Zgoubi.Les simulations se sont avĂ©rĂ©es particuliĂšrement utiles pour mieux comprendre les pertes de polarisation Ă  travers rĂ©sonances horizontales intrinsĂšques de spin. Le modĂšle Zgoubi ainsi que les outils dĂ©veloppĂ©s ont Ă©galement Ă©tĂ© utilisĂ©es pour certaines applications directes. Par exemple, les simulations d'expĂ©riences de faisceau ont permis l'estimation prĂ©cise des gains de polarisation attendus en fonction des changements apportĂ©s. En particulier, des simulations d'expĂ©riences impliquant le systĂšme de saut des nombres d'onde ont fournis des estimations prĂ©cises de la polarisation gagnĂ© et permis le choix des conditions optimales de la machine.The AGS provides a polarized proton beam to RHIC. The beam is accelerated in the AGS from GÎł = 4.5 to GÎł = 45.5 and the polarization transmission is critical to the RHIC spin program. In the recent years, various systems were implemented to improve the AGS polarization transmission. These upgrades include the double partial snakes configuration and the tune jumps system. However, 100 % polarization transmission through the AGS acceleration cycle is not yet reached. The current efficiency of the polarization transmission is estimated to be around 85 % in typical running conditions. Understanding the sources of depolarization in the AGS is critical to improve the AGS polarized proton performances. The complexity of beam and spin dynamics, which is in part due to the specialized Siberian snake magnets, drove a strong interest for original methods of simulations. For that, the Zgoubi code, capable of direct particle and spin tracking through field maps, was here used to model the AGS. A model of the AGS using the Zgoubi code was developed and interfaced with the current system through a simple command: the AgsFromSnapRampCmd. Interfacing with the machine control system allows for fast modelization using actual machine parameters. Those developments allowed the model to realistically reproduce the optics of the AGS along the acceleration ramp. Additional developments on the Zgoubi code, as well as on post-processing and pre-processing tools, granted long term multiturn beam tracking capabilities: the tracking of realistic beams along the complete AGS acceleration cycle. Beam multiturn tracking simulations in the AGS, using realistic beam and machine parameters, provided a unique insight into the mechanisms behind the evolution of the beam emittance and polarization during the acceleration cycle. Post-processing softwares were developed to allow the representation of the relevant quantities from the Zgoubi simulations data. The Zgoubi simulations proved particularly useful to better understand the polarization losses through horizontal intrinsic spin resonances The Zgoubi model as well as the tools developed were also used for some direct applications. For instance, some beam experiment simulations allowed an accurate estimation of the expected polarization gains from machine changes. In particular, the simulations that involved involved the tune jumps system provided an accurate estimation of polarization gains and the optimum settings that would improve the performance of the AGS

    A Comparative Analysis of Simulations and Experimental Outcomes: Slow Extraction Driven by RF Transverse Excitation at the CERN Proton Synchrotron

    No full text
    Radio-Frequency Knockout (RFKO) is a method of resonant slow beam extraction which is able to produce continuous particle spills over durations longer than can be achieved with fast single-turn or non-resonant multi-turn extraction. By using transverse excitation to gradually drive the circulating particles into resonance, spills can be produced over many thousands of turns, at a low intensity, and with a flat time profile. These spills can be delivered to facilities—such as fixed-target experiments or hadron therapy gantries—which require a continuous, low-intensity particle flux of durations significantly longer than the particle revolution period. In order to accurately and efficiently simulate this extraction process over a wide range of timescales, new modelling tools and computing platforms must be explored. By utilising optimised computational hardware—such as General Purpose Graphics Processing Units (GPGPUs), and next-generation simulation software (such as Xsuite), computation times for simulations can be reduced by several orders of magnitude while remaining accurate compared to empirical measurements. This thesis presents the novel implementation and simulation of RFKO slow extraction at the East Area (EA) experimental facility, located at CERN’s Proton Synchrotron (PS). The results of the experiments outlined seek to confirm both the accuracy of the simulated frequency response and time structure, and the benefits of GPU-accelerated simulation software. These results will also provide an analysis of optimal parameter selections for both the extraction control system—optimising for spill quality—and the simulation system architecture—optimising for performance

    Laser beam transport and stabilization considerations for the Gamma Factory proof-of-principle experiment

    No full text
    The Gamma Factory proof-of-principle (GF PoP) experiment consists in colliding high intensity ultrafast laser pulses with ultra-relativistic partially stripped ion beams at the CERN Super Proton Synchrotron (SPS). The experiment represents the first demonstration of fast cooling of ultra- relativistic ion beams and high flux gamma ray production. Such advances are expected to open up many research avenues ranging from atomic and nuclear physics to high energy particle physics. On the optical side, the stringent experimental requirements are translated to laser average powers of the order of 200 kW with 40 MHz repetition rates and femtosecond pulse durations. This phenomenal laser parameter space can only be achieved with state-of-the-art optical systems, with important challenges stemming from the harsh environment of hadronic machines. In this paper we perform a preliminary vibrational analysis of such environment to estimate its impact on the Gamma Factory proof of principle experimen

    CALIBRATION OF LINEAR OPTICS OF COSY BASED ON ORM DATA

    No full text
    The COoler SYnchrotron in JĂŒlich is a well suited accelerator for a precursor experiment on the direct measurement of the Electric Dipole Moment (EDM) of the deuteron (see* and references within). It provides polarized and unpolarized proton and deuteron beams in the momentum range between 0.3 GeV/c and 3.65 GeV/c**, allows for phase space cooling and is highly flexible with respect to ion-optical settings***. Unfortunately, a model independent linear optics measurement is not possible and so far the existing MAD-X model of COSY does not provide an agreement with the actual machine parameters that is required by future experiments, such as the EDM experiment. Significant deviations with respect to the working point and linear optics have been reported****. As shown in*****, a MAD-X based LOCO (Linear Optics from Closed Orbits) algorithm in a C++ program was successfully developed and carefully benchmarked. This contribution presents the application of the new program on measured ORM data and its capabilities in calibrating linear optics as well as reconstructing machine imperfections such as gradient errors of quadrupole magnets and calibration factors of BPMs and steerers

    COSY Extraction Line Characterization and Modeling

    No full text
    COSY is a versatile racetrack-type synchrotron accelerating protons and deuterons in a range of rigidity between 1 T m and 11 T m. Circulating beam can be slowly extracted on a third order resonance and channeled towards different users. New users of the COSY beam have presented new challenges with specific requests, most notably in term of beam shape. This in turn drove a strong interest to develop and improve characterization and modeling methods in the COSY extraction beam line. In this contribution we will present the different beam characterization methods used and their limitations. We will then discuss the modeling of the line and the importance of an accurate and reliable model of the extraction line. Some of the latest beam measurements are presented and compared to modeled results
    corecore