11 research outputs found

    Measures de vent 3D avec le lidar Doppler coherent Live Ă  bord d'un avion

    Get PDF
    International audienceA three-dimensional (3D) wind profiling Lidar, based on the latest high power 1.5 ”m fiber laser development at Onera, has been successfully flown on-board a SAFIRE (Service des Avions Français InstrumentĂ©s pour la Recherche en Environnement) ATR42 aircraft. The Lidar called LIVE (LIdar VEnt) is designed to measure wind profiles from the aircraft down to ground level, with a horizontal resolution of 3 km, a vertical resolution of 100 m and a designed accuracy on each three wind vector components better than 0.5 m.s −1. To achieve the required performance, LIVE Lidar emits 410 ”J laser pulses repeating at 14 KHz with a duration of 700 ns and uses a conical scanner of 30 ‱ total opening angle and a full scan time of 17 s.Un lidar vent 3D, basĂ© sur le dernier dĂ©veloppement de laser Ă  fibre de 1,5 ”m Ă  haute puissance de l’ONERA a Ă©tĂ© testĂ© avec succĂšs Ă  bord d’un avion SAFIRE ATR42. Le lidar appelĂ© LIVE est conçu pour mesurer les profils de vent de l’avion jusqu'au sol, avec une rĂ©solution horizontale de 3 km, une rĂ©solution verticale de 100 m et une prĂ©cision calculĂ©e supĂ©rieure Ă  0,5 m / s pour chaque composante du vecteur du vent

    La combinaison cohérente par contrÎle actif de la phase : un outil pratique pour l'optique adaptative et non linéaire

    No full text
    International audienceCoherent beam combining with active phase control is more than a simple laser power scaling technique. It can also be used to perform more efficient adaptive optics and to extend the capabilities of nonlinear optical devices. In a first part of this paper, an optimized tiled-aperture configuration for coherent adaptive optics is described. In a second part, coherent combining of frequency converters emitting in the mid-infrared is demonstrated and results presented. Finally, the challenges for optical parametric oscillators combining are discussed.La combinaison cohĂ©rente de faisceaux laser par contrĂŽle actif de la phase est plus qu'une simple mĂ©thode pour monter en puissance des lasers. Elle peut aussi ĂȘtre mise en Ɠuvre pour rĂ©aliser une fonction d'optique adaptative et pour Ă©tendre les capacitĂ©s des dispositifs optiques non linĂ©aires. Dans une premiĂšre partie, une configuration de pupilles laser juxtaposĂ©es optimisĂ©e pour l'optique adaptative cohĂ©rente est dĂ©crite. Dans une seconde partie, la combinaison cohĂ©rente de convertisseurs de frĂ©quence Ă©mettant dans le moyen infrarouge est dĂ©montrĂ©e et les principaux rĂ©sultats prĂ©sentĂ©s. En final, les dĂ©fis de la combinaison d'oscillateurs paramĂ©triques optiques sont discutĂ©

    Impact d'une combinaison cohérente de faisceaux par technique de marquage en fréquence sur un signal télécom pour les communications spatiales

    No full text
    International audienceIn this contribution, we present a preliminary study for coherent beam combining carrying high information rate data for very high power space communications. We focus on the impact of the amplitude of the frequency tagging locking technique on the quality of an NRZ and DPSK telecom signals.Dans cette contribution, nous présentons une étude préliminaire préparant la possibilité d'effectuer une combinaison cohérente de faisceaux portant des données à haut débit d'information pour les communications spatiales à trÚs forte puissance. Nous nous focalisons sur l'impact de l'amplitude du marquage en fréquence utilisé pour la mise en cohérence des faisceaux sur la qualité d'un signal NRZ et DPSK

    Combinaison de faisceaux cohérents et modulation télécom : impact réciproque

    No full text
    International audienceThere is a growing interest in ground-to-satellite optical communication to go beyond their radio-frequency (RF) counterparts and especially tackle the issue of RF bands saturation [1]. Nevertheless, laser systems used as transmitter feeder links require relatively high power (typically 500 W [2]) but also beam quality wavefront control maximize transmission through atmospheric turbulences. These specifications are yet difficult achieve at same time with this type high-power laser. Coherent Beam Combining (CBC) enables scaling several amplifiers master-oscillator-power-amplifier (MOPA) configuration preserving safe operating regime [3]. CBC could thus be solution for development next generation emitters telecom applications.Les communications optiques sol-satellite suscitent un intĂ©rĂȘt croissant pour aller au-delĂ  de leurs Ă©quivalents radiofrĂ©quences (RF) et pour rĂ©soudre le problĂšme de la saturation des bandes RF [1]. Cependant, les systĂšmes laser utilisĂ©s comme Ă©metteurs dans les liaisons optiques de connexion nĂ©cessitent une puissance relativement Ă©levĂ©e (typiquement 500 W [2]), ainsi qu’une qualitĂ© de faisceau Ă©levĂ©e et un contrĂŽle du front d'onde pour maximiser la transmission Ă  travers les turbulences atmosphĂ©riques. Ces spĂ©cifications sont difficiles Ă  atteindre simultanĂ©ment pour des lasers Ă  haute puissance. La combinaison cohĂ©rente de faisceaux (CBC) en configuration MOPA permet de dĂ©passer la puissance d’un amplificateur unique tout en prĂ©servant un rĂ©gime de fonctionnement sĂ»r [3]. La CBC pourrait donc ĂȘtre une solution pour le dĂ©veloppement de la prochaine gĂ©nĂ©ration d'Ă©metteurs Ă  haute puissance pour les applications de tĂ©lĂ©communications

    Combinaison cohérente de générateurs de différence de fréquences : démonstration expérimentale et application aux oscillateurs paramétriques optiques

    No full text
    International audienceCoherent beam combining (CBC) by active phase control could be useful for power scaling fiber-laser-pumped optical frequency converters like optical parametric oscillators (OPOs). We developed an indirect phase control approach based on the phase matching relation intrinsic to efficient nonlinear processes. Previously, we demonstrated coherent combining of second harmonic waves through real time active control of the phases of the fundamental waves, using high bandwidth fibered electro-optic phase modulators. In the case of this 2-wavelength process, it was possible to simultaneously combine both the fundamental and the second harmonic waves. In this paper, we present an experimental demonstration of coherent combining of difference frequency generators emitting an idler wave at 3400 nm. We confirm experimentally the theoretical prediction that through active phase control of the sole 1064 nm pump waves, it's possible to coherently combine the idler waves efficiently. A residual phase error of 1/28th wave at 3400 nm is achieved, corresponding to an excellent combining efficiency. However, in such a 3-wavelength process, simultaneous combination of the signal and idler waves is not always feasible. This demonstration opens the way to mid-infrared OPO combining. We present the architectures of continuous wave OPOs we are working on.Nous prĂ©sentons une dĂ©monstration expĂ©rimentale de combinaison cohĂ©rente de gĂ©nĂ©rateurs de diffĂ©rence de frĂ©quences Ă©mettant Ă  3400 nm. Nous montrons que par le contrĂŽle actif de la phase des seules ondes de pompe Ă  1064 nm, il est possible de rĂ©aliser la combinaison cohĂ©rente efficace des ondes complĂ©mentaires, avec une diffĂ©rence de phase rĂ©siduelle de lambda/28. Nous prĂ©sentons aussi les architectures d’OPO continus sur lesquelles nous travaillons, ainsi que les premiers rĂ©sultats de combinaison cohĂ©rente de ces OPOs. Nous dĂ©taillons comment les modes de cavitĂ© des OPOs combinĂ©s sont mis en coĂŻncidence, et comment le contrĂŽle actif de la phase utilisĂ© pour la combinaison de DFG peut ĂȘtre mis en Ɠuvre dans ce cas

    High peak power Doppler Lidar based on a 1.5”m compressive-strained-singlemode fiber amplifier

    No full text
    International audienceWind Doppler coherent lidars based on pulsed single frequency fiber sources are usually limited by SBS (stimulated Brillouin Scattering) in the final fiber booster. This nonlinear effect limits the peak power achievable to around 50-100W in singlemode fibers, 200-300W in commercial LMA (large mode area) fibers and up to 2kW in specialty fibers. Onera has developed a patented SBS mitigation technique using compressive strain on fibers. This technique has been applied to a singlemode fiber amplifier and a peak power of up to 200W have been generated before the arising of SBS. This peak power is comparable to LMA fiber booster performances with additional advantages: the singlemode geometry allows using standard telecom fiber components and optimizes coherent mixing with the singlemode local oscillator. We will present the details of this technique, the achieved laser performances and tests results of a lidar using this compressive-strained-source

    En camino hacia la mejora continua de procesos

    No full text
    International audienceSome applications like range finding, optical counter measures or engine ignition, require lasers capable of delivering high repetition rate bursts of nanosecond pulses with hundreds of microjoules to a few millijoules in terms of energy per pulse. We have developed such a diode pumped Yb:YAG micro-laser with an oscillator comprised of a 2-mm long 10% at. doped Yb:YAG crystal followed by a Cr:YAG passive Q-switch with an initial transmittance of 85 %. The laser plano-concave cavity is 5-cm long. This oscillator emits 250 ”J to 300 ”J per pulse, with a 3-5 ns pulse duration, with an intra-burst pulse repetition frequency that can be tuned continuously from 1 kHz to 20 kHz by increasing the pump power. The pumping diode laser is operated in quasi continuous wave regime, emitting 1-ms to 10-ms long pulses with up to 20 W peak power This qcw pumping results in the emission of a burst of pulses at high repetition rate for the duration of this pump long pulse. These pump pulses, and consequently the bursts of nanosecond pulses, are repeated at very low frequency, between 1 Hz and 5 Hz, so that the average power to handle doesn't require active cooling. This oscillator is then amplified to the millijoule level in a second 3-mm long Yb:YAG crystal pumped by a synchronous qcw emitting diode laser.Nous avons dĂ©veloppĂ© un micro-laser Yb:YAG pompĂ© par diode et dĂ©clenchĂ© passivement par un cristal de Cr:YAG, qui dĂ©livre des paquets d’impulsions nanoseconde avec des Ă©nergies par impulsions de l’ordre du millijoule.L’oscillateur Ă©met autour de 300 ”J par impulsion, avec une durĂ©e d’impulsion de quelques nanosecondes, dont la cadence Ă  l’intĂ©rieur du paquet d’impulsions peut ĂȘtre accordĂ©e continĂ»ment jusqu’à 20 kHz. Il est amplifiĂ© jusqu’au millijoule par un second cristal d’Yb:YAG pompĂ© par diode laser. Les diodes laser de pompe sont synchrones et fonctionnent en rĂ©gime quasi continu. Elles Ă©mettent des pulses longs rĂ©pĂ©tĂ©s Ă  seulement quelques hertz, de façon Ă  ne pas nĂ©cessiter de refroidissement actif

    Pulsed 1.5 ”m LIDAR for Axial Aircraft Wake Vortex Detection Based on High-Brightness Large-Core Fiber Amplifier

    No full text
    In this paper, we present the development of an axial aircraft wake vortex light detection and ranging (LIDAR) sensor, working in Mie scattering regime, based on pulsed 1.5 ”m high-brightness large-core fiber amplifier. An end-to-end Doppler heterodyne LIDAR simulator is used for the LIDAR design. The simulation includes the observation geometry, the wake vortex velocity image, the scanning pattern, the LIDAR instrument, the wind turbulence outside the vortex, and the signal processing. An innovative high-brightness pulsed 1.5 ”m laser source is described, based on a master oscillator power fiber amplifier (MOPFA) architecture with a large-core fiber. The obtained beam quality is excellent (MÂČ = 1.3), and achieved pulsed energy is 120 ”J with a pulse repetition frequency of 12 kHz and a pulse duration of 800 us. A Doppler heterodyne LIDAR is developed based on this laser source with a high-isolation free-space circulator. The LIDAR includes a real-time display of the wind field. Wind dispersion is postprocessed. Field tests carried out at Orly airport in April 2008 are reported. Axial aircraft wake vortex signatures have been successfully observed and acquired at a range of 1.2 km with axial resolution of 75 m for the first time with fiber laser source

    Heterodyne and direct detection wind lidar developed at ONERA

    No full text
    International audienceIn this paper, we present the two wind lidar architectures developed at ONERA: the heterodyne lidar which analyzes the backscattering of particles and the direct detection lidar using a QMZ which analyzes the backscattering of molecules. In both cases, solutions have been developed to be able to embark them on an airplane: fiber laser, robust receiver, robust general architecture. Both technologies could provide interesting comparative measurements for AEOLUS calibration/validation campaigns: the heterodyne configuration allows precise measurements on the lower part of the atmosphere while the QMZ configuration allows reaching up to at an altitude of 20 km. In addition, regarding the developments made for molecular lidar, the UV fiber laser and the monolithic QMZ receiver could be excellent solutions for the next generation of Aeolus to reduce costs, improve data quality and lidar durability.Dans cet article, nous prĂ©sentons les deux architectures de lidar Ă©olien dĂ©veloppĂ©es Ă  l'ONERA : le lidar hĂ©tĂ©rodyne qui analyse la rĂ©trodiffusion des particules et le lidar Ă  dĂ©tection directe utilisant un QMZ qui analyse la rĂ©trodiffusion des molĂ©cules. Dans les deux cas, des solutions ont Ă©tĂ© dĂ©veloppĂ©es pour pouvoir les embarquer dans un avion : laser Ă  fibre, rĂ©cepteur robuste, architecture gĂ©nĂ©rale robuste. Les deux technologies pourraient fournir des mesures comparatives intĂ©ressantes pour les campagnes d'Ă©talonnage/validation AEOLUS : la configuration hĂ©tĂ©rodyne permet des mesures prĂ©cises sur la partie infĂ©rieure de l'atmosphĂšre tandis que la configuration QMZ permet d'atteindre jusqu'Ă  20 km d'altitude. De plus, concernant les dĂ©veloppements rĂ©alisĂ©s pour le lidar molĂ©culaire, le laser Ă  fibre UV et le rĂ©cepteur QMZ monolithique pourraient ĂȘtre d'excellentes solutions pour la prochaine gĂ©nĂ©ration d'Aeolus afin de rĂ©duire les coĂ»ts, d'amĂ©liorer la qualitĂ© des donnĂ©es et la durabilitĂ© du lidar
    corecore