4,794 research outputs found
Recommended from our members
Seminatrix, S. pygaea
Number of Pages: 5Integrative BiologyGeological Science
Fatigue life estimates for helicopter loading spectra
Helicopter loading histories applied to notch metal samples are used as examples, and their fatigue lives are calculated by using a simplified version of the local strain approach. This simplified method has the advantage that it requires knowing the loading history in only the reduced form of ranges and means and number of cycles from the rain-flow cycle counting method. The calculated lives compare favorably with test data
Cold Atom Physics Using Ultra-Thin Optical Fibers: Light-Induced Dipole Forces and Surface Interactions
The strong evanescent field around ultra-thin unclad optical fibers bears a
high potential for detecting, trapping, and manipulating cold atoms.
Introducing such a fiber into a cold atom cloud, we investigate the interaction
of a small number of cold Caesium atoms with the guided fiber mode and with the
fiber surface. Using high resolution spectroscopy, we observe and analyze
light-induced dipole forces, van der Waals interaction, and a significant
enhancement of the spontaneous emission rate of the atoms. The latter can be
assigned to the modification of the vacuum modes by the fiber.Comment: 4 pages, 4 figure
Introgressive Hybridization and the Evolution of Lake-Adapted Catostomid Fishes.
Hybridization has been identified as a significant factor in the evolution of plants as groups of interbreeding species retain their phenotypic integrity despite gene exchange among forms. Recent studies have identified similar interactions in animals; however, the role of hybridization in the evolution of animals has been contested. Here we examine patterns of gene flow among four species of catostomid fishes from the Klamath and Rogue rivers using molecular and morphological traits. Catostomus rimiculus from the Rogue and Klamath basins represent a monophyletic group for nuclear and morphological traits; however, the Klamath form shares mtDNA lineages with other Klamath Basin species (C. snyderi, Chasmistes brevirostris, Deltistes luxatus). Within other Klamath Basin taxa, D. luxatus was largely fixed for alternate nuclear alleles relative to C. rimiculus, while Ch. brevirostris and C. snyderi exhibited a mixture of these alleles. Deltistes luxatus was the only Klamath Basin species that exhibited consistent covariation of nuclear and mitochondrial traits and was the primary source of mismatched mtDNA in Ch. brevirostris and C. snyderi, suggesting asymmetrical introgression into the latter species. In Upper Klamath Lake, D. luxatus spawning was more likely to overlap spatially and temporally with C. snyderi and Ch. brevirostris than either of those two with each other. The latter two species could not be distinguished with any molecular markers but were morphologically diagnosable in Upper Klamath Lake, where they were largely spatially and temporally segregated during spawning. We examine parallel evolution and syngameon hypotheses and conclude that observed patterns are most easily explained by introgressive hybridization among Klamath Basin catostomids
Quantum reflection of atoms from a solid surface at normal incidence
We observed quantum reflection of ultracold atoms from the attractive
potential of a solid surface. Extremely dilute Bose-Einstein condensates of
^{23}Na, with peak density 10^{11}-10^{12}atoms/cm^3, confined in a weak
gravito-magnetic trap were normally incident on a silicon surface. Reflection
probabilities of up to 20 % were observed for incident velocities of 1-8 mm/s.
The velocity dependence agrees qualitatively with the prediction for quantum
reflection from the attractive Casimir-Polder potential. Atoms confined in a
harmonic trap divided in half by a solid surface exhibited extended lifetime
due to quantum reflection from the surface, implying a reflection probability
above 50 %.Comment: To appear in Phys. Rev. Lett. (December 2004)5 pages, 4 figure
Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber
Trapping and optically interfacing laser-cooled neutral atoms is an essential
requirement for their use in advanced quantum technologies. Here we
simultaneously realize both of these tasks with cesium atoms interacting with a
multi-color evanescent field surrounding an optical nanofiber. The atoms are
localized in a one-dimensional optical lattice about 200 nm above the nanofiber
surface and can be efficiently interrogated with a resonant light field sent
through the nanofiber. Our technique opens the route towards the direct
integration of laser-cooled atomic ensembles within fiber networks, an
important prerequisite for large scale quantum communication schemes. Moreover,
it is ideally suited to the realization of hybrid quantum systems that combine
atoms with, e.g., solid state quantum devices
Simulations of atomic trajectories near a dielectric surface
We present a semiclassical model of an atom moving in the evanescent field of
a microtoroidal resonator. Atoms falling through whispering-gallery modes can
achieve strong, coherent coupling with the cavity at distances of approximately
100 nanometers from the surface; in this regime, surface-induced Casmir-Polder
level shifts become significant for atomic motion and detection. Atomic transit
events detected in recent experiments are analyzed with our simulation, which
is extended to consider atom trapping in the evanescent field of a microtoroid.Comment: 29 pages, 10 figure
The time-reversal test for stochastic quantum dynamics
The calculation of quantum dynamics is currently a central issue in
theoretical physics, with diverse applications ranging from ultra-cold atomic
Bose-Einstein condensates (BEC) to condensed matter, biology, and even
astrophysics. Here we demonstrate a conceptually simple method of determining
the regime of validity of stochastic simulations of unitary quantum dynamics by
employing a time-reversal test. We apply this test to a simulation of the
evolution of a quantum anharmonic oscillator with up to
(Avogadro's number) of particles. This system is realisable as a Bose-Einstein
condensate in an optical lattice, for which the time-reversal procedure could
be implemented experimentally.Comment: revtex4, two figures, four page
Husimi's function and quantum interference in phase space
We discuss a phase space description of the photon number distribution of non
classical states which is based on Husimi's function and does not
rely in the WKB approximation. We illustrate this approach using the examples
of displaced number states and two photon coherent states and show it to
provide an efficient method for computing and interpreting the photon number
distribution . This result is interesting in particular for the two photon
coherent states which, for high squeezing, have the probabilities of even and
odd photon numbers oscillating independently.Comment: 15 pages, 12 figures, typos correcte
On Approximation of the Eigenvalues of Perturbed Periodic Schrodinger Operators
This paper addresses the problem of computing the eigenvalues lying in the
gaps of the essential spectrum of a periodic Schrodinger operator perturbed by
a fast decreasing potential. We use a recently developed technique, the so
called quadratic projection method, in order to achieve convergence free from
spectral pollution. We describe the theoretical foundations of the method in
detail, and illustrate its effectiveness by several examples.Comment: 17 pages, 2 tables and 2 figure
- …